Class TextEmbeddingGenerator (1.41.0)

TextEmbeddingGenerator(
    *,
    model_name: typing.Literal[
        "text-embedding-005", "text-embedding-004", "text-multilingual-embedding-002"
    ] = "text-embedding-004",
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None
)

Text embedding generator LLM model.

Parameters

NameDescription
model_namestr, Default to "text-embedding-004"

The model for text embedding. Possible values are "text-embedding-005", "text-embedding-004" or "text-multilingual-embedding-002". text-embedding models returns model embeddings for text inputs. text-multilingual-embedding models returns model embeddings for text inputs which support over 100 languages. Default to "text-embedding-004".

sessionbigframes.Session or None

BQ session to create the model. If None, use the global default session.

connection_namestr or None

Connection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>.

Methods

__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

Parameter
NameDescription
deepbool, default True

Default True. If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
TypeDescription
DictionaryA dictionary of parameter names mapped to their values.

predict

predict(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    *,
    max_retries: int = 0
) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

Parameters
NameDescription
Xbigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series

Input DataFrame or Series, can contain one or more columns. If multiple columns are in the DataFrame, it must contain a "content" column for prediction.

max_retriesint, default 0

Max number of retries if the prediction for any rows failed. Each try needs to make progress (i.e. has successfully predicted rows) to continue the retry. Each retry will append newly succeeded rows. When the max retries are reached, the remaining rows (the ones without successful predictions) will be appended to the end of the result.

Returns
TypeDescription
bigframes.dataframe.DataFrameDataFrame of shape (n_samples, n_input_columns + n_prediction_columns). Returns predicted values.

to_gbq

to_gbq(
    model_name: str, replace: bool = False
) -> bigframes.ml.llm.TextEmbeddingGenerator

Save the model to BigQuery.

Parameters
NameDescription
model_namestr

The name of the model.

replacebool, default False

Determine whether to replace if the model already exists. Default to False.

Returns
TypeDescription
TextEmbeddingGeneratorSaved model.