- 2.4.0 (latest)
- 2.3.0
- 2.2.0
- 2.1.0
- 2.0.0
- 1.42.0
- 1.41.0
- 1.40.0
- 1.39.0
- 1.38.0
- 1.37.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
MultimodalEmbeddingGenerator(
*,
model_name: typing.Literal["multimodalembedding@001"] = "multimodalembedding@001",
session: typing.Optional[bigframes.session.Session] = None,
connection_name: typing.Optional[str] = None
)
Multimodal embedding generator LLM model.
Parameters | |
---|---|
Name | Description |
model_name | str, Default to "multimodalembedding@001" The model for multimodal embedding. Can set to "multimodalembedding@001". Multimodal-embedding models returns model embeddings for text, image and video inputs. Default to "multimodalembedding@001". |
session | bigframes.Session or None BQ session to create the model. If None, use the global default session. |
connection_name | str or None Connection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>. |
Methods
__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
Parameter | |
---|---|
Name | Description |
deep | bool, default True Default |
Returns | |
---|---|
Type | Description |
Dictionary | A dictionary of parameter names mapped to their values. |
predict
predict(
X: typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
],
*,
max_retries: int = 0
) -> bigframes.dataframe.DataFrame
Predict the result from input DataFrame.
Parameters | |
---|---|
Name | Description |
X | bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series Input DataFrame or Series, can contain one or more columns. If multiple columns are in the DataFrame, it must contain a "content" column for prediction. The content column must be of string type or BigFrames Blob of image or video. |
max_retries | int, default 0 Max number of retries if the prediction for any rows failed. Each try needs to make progress (i.e. has successfully predicted rows) to continue the retry. Each retry will append newly succeeded rows. When the max retries are reached, the remaining rows (the ones without successful predictions) will be appended to the end of the result. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame | DataFrame of shape (n_samples, n_input_columns + n_prediction_columns). Returns predicted values. |
to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.llm.MultimodalEmbeddingGenerator
Save the model to BigQuery.
Parameters | |
---|---|
Name | Description |
model_name | str The name of the model. |
replace | bool, default False Determine whether to replace if the model already exists. Default to False. |
Returns | |
---|---|
Type | Description |
MultimodalEmbeddingGenerator | Saved model. |