

Introducing the Specifications of the Metro Ethernet Forum

Introducing the Specifications of the Metro Ethernet Forum

MEF 2	Requirements and Framework for Ethernet Service Protection
MEF 3	Circuit Emulation Service Definitions, Framework and Requirements in Metro Ethernet Networks
MEF 4	Metro Ethernet Network Architecture Framework Part 1: Generic Framework
MEF 6	Metro Ethernet Services Definitions Phase I
MEF 7	EMS-NMS Information Model
MEF 8	Implementation Agreement for the Emulation of PDH Circuits over Metro Ethernet Networks
MEF 9	Abstract Test Suite for Ethernet Services at the UNI
MEF 10	Ethernet Services Attributes Phase I
MEF 11	User Network Interface (UNI) Requirements and Framework
MEF 12	Metro Ethernet Network Architecture Framework Part 2: Ethernet Services Layer
MEF 13	User Network Interface (UNI) Type 1 Implementation Agreement
MEF 14	Abstract Test Suite for Ethernet Services at the UNI
MEF 15	Requirements for Management of Metro Ethernet Phase 1 Network Elements
MEF 16	Ethernet Local Management Interface

This Presentation

Purpose

- This presentation is intended as an introduction and companion to both the MEF 3 and MEF 8 Specifications
- These are the two principal specifications relating to services that carry Circuit Emulation/TM traffic across Carrier Ethernet

Audience

- It is intended for Product Marketing, Engineering staff of member companies, for members of other standards bodies, Enterprise networking staff, and service providers who
 - Would like a quick overview of the specifications
 - Plan to read the specifications in detail

Other Documents

- Presentations of the other specifications and an overview of all specifications is available on the MEF web site
- Other materials such as white papers and case studies are also available

MEF Specifications Overview

MEF 3	Circuit Emulation Service Definitions, Framework and Requirements in Metro Ethernet Networks					
Purpose	Circuit Emulation Service "tunnels" TDM traffic through a Metro Ethernet network allowing inclusion of legacy networks within a Carrier Ethernet environment					
Audience	Equipment Manufacturers supporting devices that provide Circuit Emulation over Carrier Ethernet Services. Useful for Service Providers architecting their systems.					

Technical Committee Service Area

MEF 8	Implementation Agreement for the Emulation of PDH Circuits over Metro Ethernet Networks
Purpose	Gives precise instructions for implementing interoperable CES equipment that reliably transport TDM circuits across Metro Ethernet Networks while meeting the required performance of circuit emulated TDM services as defined in ITU-T and ANSI TDM standards
Audience	Equipment Manufacturers supporting devices that provide Circuit Emulation over Carrier Ethernet Services. Useful for Service Providers architecting their systems.

Technical Committee Service Area

MEF 3: CES Framework & Requirement MEF 8: CES Implementation Agreement

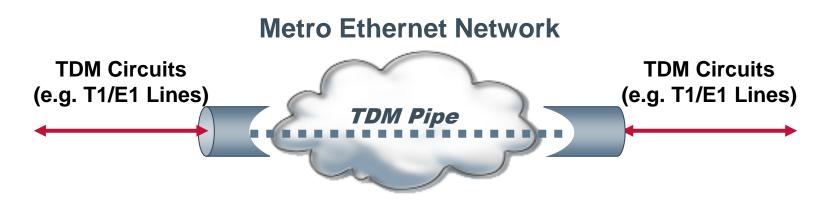
• Industry's first formal definition of CES standards over Ethernet

A services description

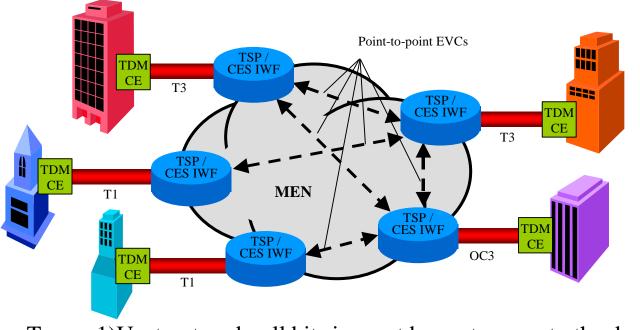
- Types of TDM services offered over Metro Ethernet,
- PDH and SONET/SDH
- DS1E1, DS3/E3, OC-3/STM-1, OC-12/STM-4

A requirement document

- Comprehensive CES requirements for providing TDM services over Ethernet
- SLA service quality parameters as specified by the ITU for TDM services

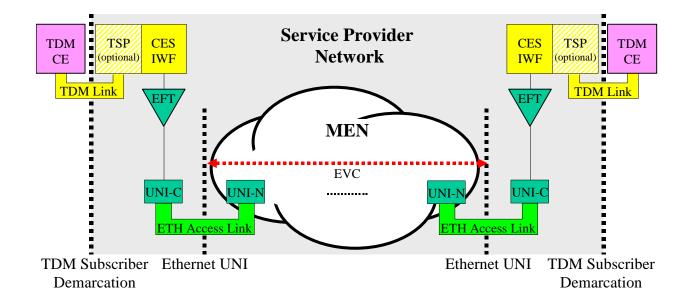

An implementation agreement for Ethernet

Practical agreement as to how to implement the CES over Ethernet

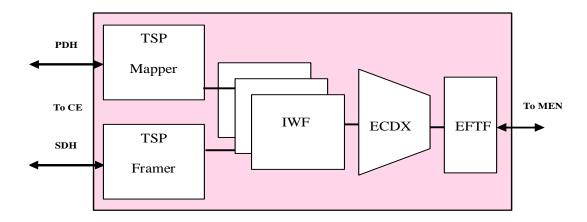

What is Circuit Emulation Service over Carrier Ethernet?

- Circuit Emulation Service "tunnels" TDM traffic through a Metro Ethernet network
 - packet network "emulates" a circuit-switched network, re-creating the TDM circuit at the far end
 - invisible to TDM source and destination equipment
 - runs on a standard Ethernet Line Service (E-Line)

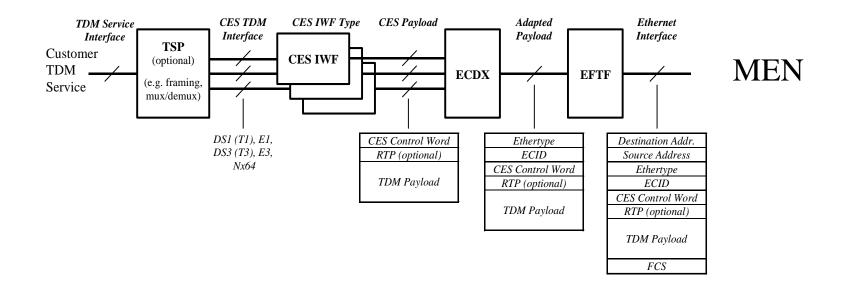
MEF 3 TDM Circuit Emulation


- Support Traditional PDH/SONET/SDH hand-offs to existing customer voice equipment
- Allow Interworking onto Ethernet EVCS across the MEN.

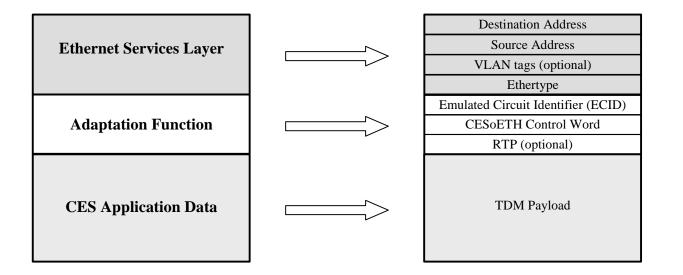
Types: 1)<u>Unstructured</u> - all bits in must be sent across to the destination 2) <u>Structured</u> - Requires only sending TDM payloads not the over head


Circuit Emulation Services Relationship to the Metro Ethernet Network

CES functions in relation to those specified by the MEF for the MEN

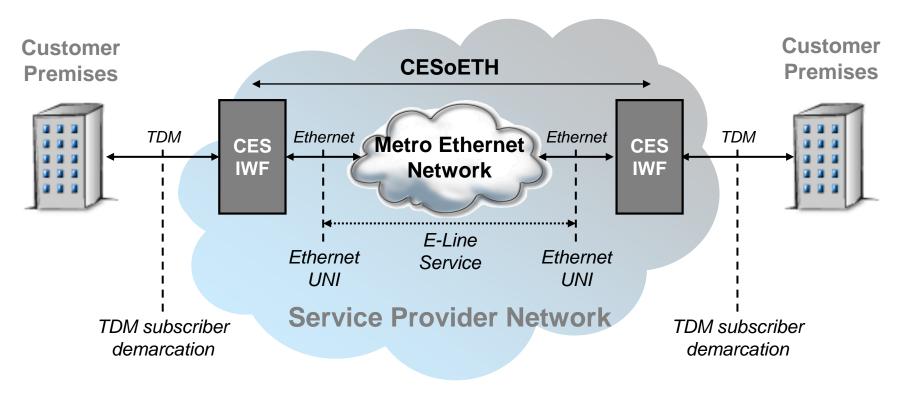

Functions Defined

- TSP Optional TDM mux/demux function –prior to Ethernet interworking
- IWF Interworking function of TDM to Ethernet frames
- ECDX Identifier function for proper forwarding and demultiplexing
- EFTF Addressing and FCS functions.


Functions applied

• ECDX as shown is effectively a multiplexing function allowing multiple CES circuits to share a single EVC

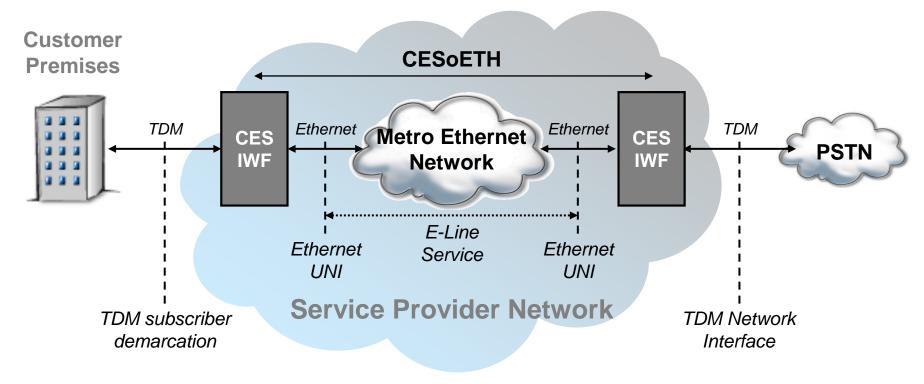
Functional Layering, and mapping onto encapsulation headers


 Treats the MEN as a "virtual wire" between two TDM networks

MEF Service Definitions

• TDM Line Service (T-Line):

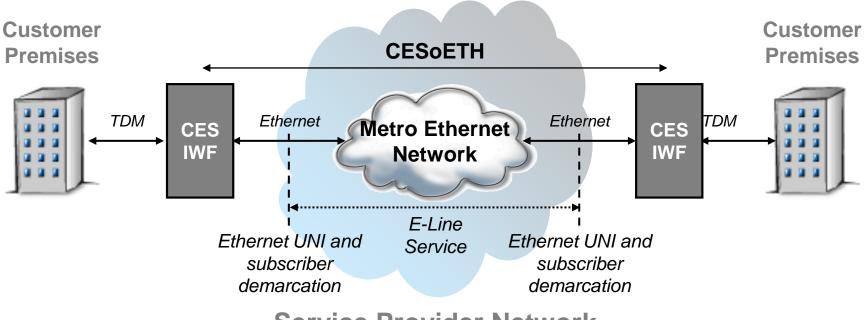
- Application: Leased line replacement



MEF Service Definitions

• TDM Access Line Service (TALS):

- Application: Access to a remote network (e.g. PSTN)



MEF Service Definitions

• Customer-Operated CES:

- Application: Toll-bypass

Service Provider Network

Structured Vs Unstructured CES

Structured Circuit Emulation Service

Structure-Agnostic or Unstructured Circuit Emulation Service

TDM services supported (MEF 3)

TDM Service Interface	Unstructured TDM Service	Structured TDM Service	Structured TDM Service Granularity	
DS1	Yes	Yes	Nx64 kbit/s	
DS3	Yes	Yes	DS1, Nx64 kbit/s	
E1	Yes	Yes	Nx64 kbit/s	
E3	Yes	Yes	E1, Nx64 kbit/s, DS0	
OC-1	Yes	Yes	STS-1, VT-1.5, VT-2	
OC-3	Yes	Yes	STS-1, VT-1.5, VT-2	
OC-3c	Yes	Yes STS-3c	STS-3c	
STM-1	Yes	Yes	VC-11 (DS1), VC-12 (E1), VC-3 (DS3, E3, other)	
STM-1c	Yes	Yes	VC-4, VC-3, VC-11, VC-12	
OC-12	Yes	Yes	VT-1.5 (DS1), VT-2 (E1), STS-1 (DS3, E3, other), STS-3c	
OC-12c	Yes	Yes	STS-12c	
STM-4	Yes	Yes	VC-11 (DS1), VC-12 (E1), VC-3 (DS3, E3, other), VC-4	
STM-4c	Yes	Yes	VC-4-4c	

MEN CoS Performance Parameters

To ensure proper CES IWF operation service quality:

- Ethernet Frame Delay should be minimized
 - to meet MEF 5 defined parameters
- Ethernet Frame Delay Variation
 - MEN EVCS jitter up to 10 ms max
- Ethernet Frame Loss
 - ESR and SESR should meet TDM requirements
- Network availability
 - should meet 99.95% TDM requirement

Specifies Interoperability requirements for:

- Connectivity
- Timing
- Signaling
- MEN performance criteria
- MEN services OAM

Emulated Circuit Identifier

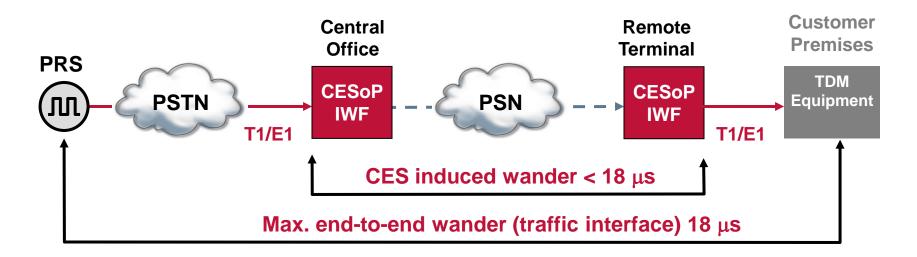
ECID

- identifies the emulated circuit being carried.
- Separates the identification of the emulated circuit from the Ethernet layer,
 - allowing the MEN operator to multiplex several emulated circuits across a single EVC where required.
- This is added by the ECDX.

CESoETH control word

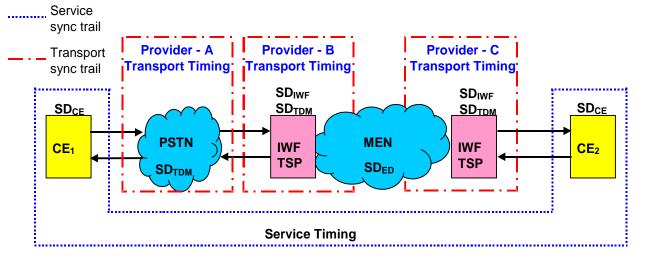
_	0	1	2	3	;	4	5	67	8	10	15	16	31
			rve zei			L	R	M (2 bits)	FRO (2 bit	H I 5)	LEN (Length) (6 bits)	SN (Sequence Number) (16 bits)	

- Provides sequencing and signaling of defects
 - such as AIS of the TDM circuit, or packet loss detected in the MEN.
- This is added by the CES IWF.


Standards for Synchronization

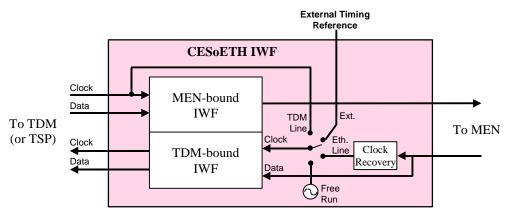
E1 standards (2.048 Mbps)

- Traffic interface (G.823, Table 2)
 - 18 μs over 1000s


T1 standards (1.544 Mbps)

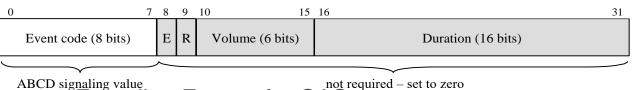
- Traffic interface (T1.403, section 6.3.1.2)
 - 8.4 μs over 900s
 - 18 μ s over 24 hours

MEF


Timing

- Synchronous services require timing be provided
 - Line, through, external or internal timing mode options
- Applies to structure aware only
- Synchronization.
 - the clock used to play out the data at the TDM-bound IWF must be the same frequency as the clock used to input the data at the MEN-bound IWF,
 - otherwise frame slips will occur over time

Timing options


- TDM line timing
 - use the clock from the incoming TDM line
- External timing
 - use an external reference clock source
- Free run timing
 - use a free-running oscillator
- Ethernet line timing
 - recovering the clock from the Ethernet interface

Signaling

Structure Aware CESoETH must provide signaling

- CE Common Channel Signaling (CCS)
 - · Can be carried within the emulated service data
- CE Common Channel Signaling (CAS)
 - Must be handled separately for Nx64 service

(codes 44000 ding Format for CAS

Note must have a separate Control Word from the Data, but can share same ECID

Performance Monitoring

- Facility Data Link
 - <u>May</u> monitor but not change DS1 Extended Super Frame message data

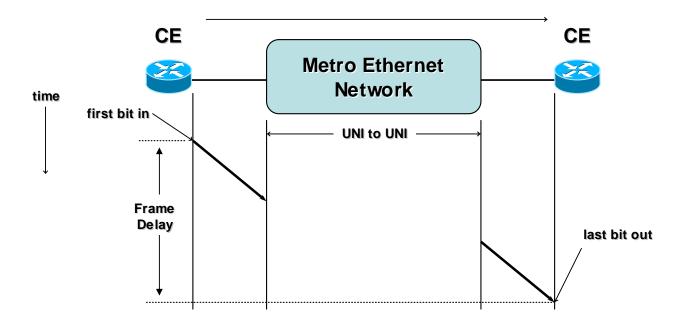
Errored Data

 CESoETH <u>should</u> be capable of monitoring Frame Error ratio

MEN Service & SLA Requirements

- MEN service quality assurance is critical to maintain consistent quality of the carried TDM service
- SLA service quality parameters should support to those specified by the ITU for TDM services
 - Nx64 Services require CAS Signaling in MEN
 - SDH/SONET requires pointer adjustments in MEN

• Specified MEN Quality Parameters:

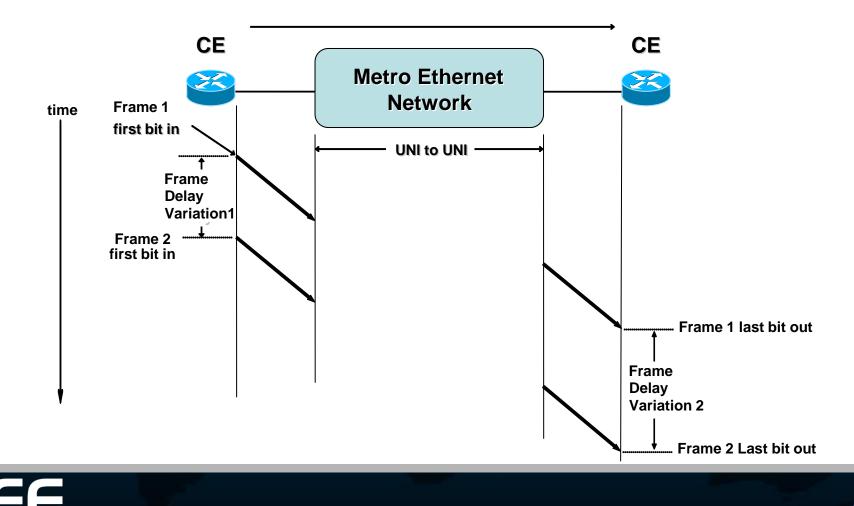

- Frame Delay:
- Jitter (Delay Variation):
- Frame Loss/Errors Ratio (FER) For SONET/SDH:
 - Errored Seconds (ES)
 - Severely Errored Sec (SES)
 - Background block SES (BFER)

Path	Rate		CES	CES
Falli	pps	FER	BFER	SESFER
VC-11	2000	4.00E-07	2.00E-06	4.00E-05
VC-11	8000	1.00E-07	2.00E-06	4.00E-05
VC-12	2000	4.00E-07	2.00E-06	4.00E-05
VC-12	8000	1.00E-07	2.00E-06	4.00E-05
VC-3	8000	1.25E-07	2.00E-06	4.00E-05
VC-3	24000	4.17E-08	2.00E-06	4.00E-05
VC-4	24000	1.33E-07	2.00E-06	4.00E-05
v C-4	14400	2.22E-07	2.00E-06	4.00E-05
VC-4-4c	72000	4.44E-08	1.00E-06	4.00E-05

<25ms <10ms

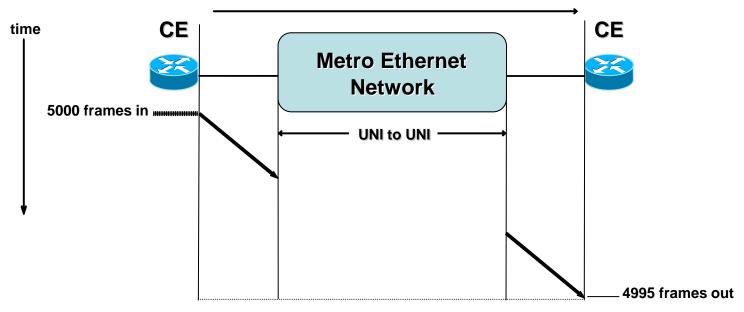
Frame Delay Defined

• The time required to transmit a service frame from source to destination across the MEN.



Measured from 1st bit in to last bit out

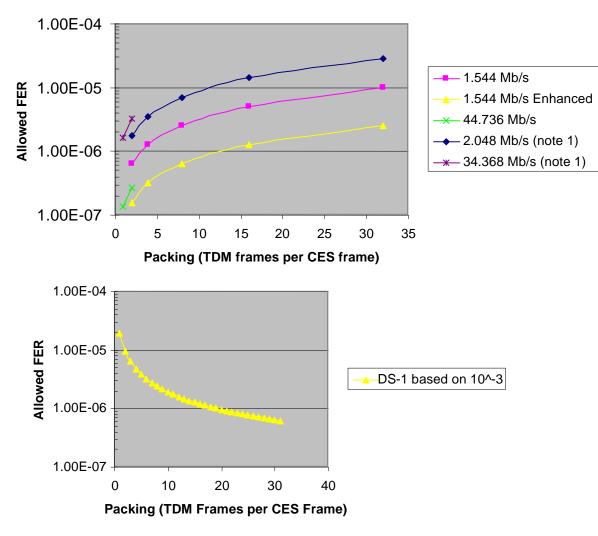
Frame Delay Variation Defined


• The difference in delay of two service frames.

Frame Loss Defined

• Frame loss is a measure of the number of lost service frames inside the MEN.

– Frame loss ratio is % = # frames lost / # frames sent



5 frames lost/or received as errored 0.1% Frame Loss Ratio (5/5000)

MEN Frame Loss Errors – PDH Limits

PDH ES

• PDH SES

MEF

Other MEN Parameters

Emulated Circuit Availability

99.95%

Emulated Circuit Restoral

< 50 ms

Suggested MEN Bandwidth increments

- 100 kbps

MEF Services OAM

• Alarms

- Misconnection alarm (section 6.6.1)
- Loss of Frames alarm (section 6.6.2)
- Late Frames alarm (section 6.6.3)
- Malformed Frames alarm (section 6.6.4)
- Jitter buffer overrun alarm (section 6.6.5)

Management – Alarms

• Misconnection Alarms – MEN defects:

- Stray Frames <u>Must</u> be discarded
 - CES IWF must check the Ethernet Source address field
- Should report an alarm
 - if stray frames persists above set threshold (Default 2.5 seconds)
- Alarm should be cleared
 - if no stray frames received for a configurable period of time (Default 10 seconds)
- Mechanism for detection of lost frames <u>Must Not</u> be affected by reception of stray frames

Management – Alarm Statistics Counters

MEN bound

- Frames transmitted
- Payload octets transmitted

TDM bound

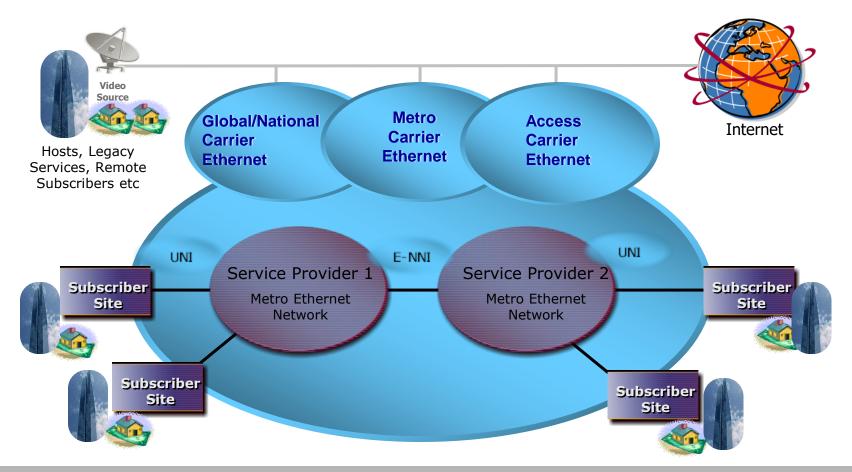
- Frames received
- Payload octets received
- Lost frames detected
- Out-of Sequence frames
- Transitions to the LOFS (Loss of frame state)
- Malformed frames received
- Jitter buffer overruns
- Jitter buffer underruns

Similar work in other bodies

• ITU-T: Recommendation Y.1413

- Very similar to MEF8, but for MPLS networks rather than Metro Ethernet
- Payload and encapsulation formats are identical
- Equipment supporting Y.1413 should also be capable of supporting MEF8

Similar work in other bodies


- IETF: draft-ietf-pwe3-satop-01.txt, draft-ietf-pwe3-cesopsn-02.txt, draft-ietf-pwe3-tdmoip-03.txt
 - Very similar to MEF8, but for IP and MPLS networks rather than Metro Ethernet
 - As with Y.1413, payload and encapsulation formats are identical
 - Equipment supporting Y.1413 should also be capable of supporting these IETF drafts

For Full Details ...

... visit www.metroethernetforum.org

to access the full specification

