Visualizing Quick Sort using Tkinter in Python
Prerequisite: QuickSort
Tkinter is a very easy-to-use and beginner-friendly GUI library that can be used to visualize the sorting algorithms. Here Quick Sort Algorithm is visualized which is a divide and conquer algorithm. It first considers a pivot element then, creates two subarrays to hold elements less than the pivot value and elements greater than the pivot value, and then recursively sort the sub-arrays. There are two fundamental operations in the algorithm, swapping items in place and partitioning a section of the array. The process is repeated by recursion until the sub-arrays are small enough to be sorted easily. Ultimately, the smaller sub-arrays can be placed one on top of the other to produce a fully sorted and ordered set of elements.
In this article, we will use the Python GUI Library Tkinter to visualize the QuickSort algorithm.
Algorithm:
- Selecting any element as a pivot
- Elements lesser than the pivot are placed before it and the ones which are greater are placed after it. Two sub-arrays are created on either side of the pivot.
- The same process is applied recursively on the right and left sub-arrays to sort them.
Time Complexity :
- Best case: The best-case occurs when the pivot always separates the array into two equal halves. In the best case, the result will be log(N) levels of partitions, with the top-level having one array of size N, the next having an array of size N/2, and so on. The best-case complexity of the quick sort algorithm is O(log N)
- Worst case: The worst case will occur when the pivot does a poor job of breaking the array, i.e. when there are no elements in one partition and N-1 elements in the other. The worst-case time complexity of Quick Sort would be O(N^2).
Extension Code for Quick Sort :
This is the extension code for the quick sort algorithm which is imported in the main Tkinter visualizer code to implement the quick sort algorithm and return the sorted result.
# Extension Quick Sort Code
# importing time module
import time
# to implement divide and conquer
def partition(data, head, tail, drawData, timeTick):
border = head
pivot = data[tail]
drawData(data, getColorArray(len(data), head,
tail, border, border))
time.sleep(timeTick)
for j in range(head, tail):
if data[j] < pivot:
drawData(data, getColorArray(
len(data), head, tail, border, j, True))
time.sleep(timeTick)
data[border], data[j] = data[j], data[border]
border += 1
drawData(data, getColorArray(len(data), head,
tail, border, j))
time.sleep(timeTick)
# swapping pivot with border value
drawData(data, getColorArray(len(data), head,
tail, border, tail, True))
time.sleep(timeTick)
data[border], data[tail] = data[tail], data[border]
return border
# head --> Starting index,
# tail --> Ending index
def quick_sort(data, head, tail,
drawData, timeTick):
if head < tail:
partitionIdx = partition(data, head,
tail, drawData,
timeTick)
# left partition
quick_sort(data, head, partitionIdx-1,
drawData, timeTick)
# right partition
quick_sort(data, partitionIdx+1,
tail, drawData, timeTick)
# Function to apply colors to bars while sorting:
# Grey - Unsorted elements
# Blue - Pivot point element
# White - Sorted half/partition
# Red - Starting pointer
# Yellow - Ending pointer
# Green - after all elements are sorted
# assign color representation to elements
def getColorArray(dataLen, head, tail, border,
currIdx, isSwaping=False):
colorArray = []
for i in range(dataLen):
# base coloring
if i >= head and i <= tail:
colorArray.append('Grey')
else:
colorArray.append('White')
if i == tail:
colorArray[i] = 'Blue'
elif i == border:
colorArray[i] = 'Red'
elif i == currIdx:
colorArray[i] = 'Yellow'
if isSwaping:
if i == border or i == currIdx:
colorArray[i] = 'Green'
return colorArray
Tkinter Implementation:
In this code, we are generating the data values as bars of different lengths and a particular color. The basic layout is designed in a Tkinter ‘Frame’ and the portion when the bars are generated and the quick sort algorithm is visualized is designed in a Tkinter ‘Canvas’.
The code essentially has the following components:
- Mainframe: a Tkinter frame to arrange all the necessary components(labels, buttons, speed bar, etc.) in an organized manner
- Canvas: A Tkinter canvas used as the space where the generated data bars are drawn and the sorting process is visualized
- generate(): Method to generate the data values by accepting a range and then passing that as a parameter to the drawData() function
- drawData(): Method to generate bars to normalized data values(within the given range) of a particular color on the canvas
- start_algorithm(): This function is called when the “START” button is pressed. It initiates the sorting process by calling the quick_sort() function from the Quick Sort Extension Code.
# code for Quick Sort Visualizer
# using Python and Tkinter
# import modules
from tkinter import *
from tkinter import ttk
import random
from quick import quick_sort
# initialising root class for Tkinter
root = Tk()
root.title("Quick Sort Visualizer")
# maximum window size
root.maxsize(900, 600)
root.config(bg="Black")
select_alg = StringVar()
data = []
# function to generate the data values
# by accepting a given range
def generate():
global data
# minval : minimum value of the range
minval = int(minEntry.get())
# maxval : maximum value of the range
maxval = int(maxEntry.get())
# sizeval : number of data
# values/bars to be generated
sizeval = int(sizeEntry.get())
# creating a blank data list which will
# be further filled with random data values
# within the entered range
data = []
for _ in range(sizeval):
data.append(random.randrange(minval, maxval+1))
drawData(data, ['Red' for x in range(len(data))])
# function to create the data bars
# by creating a canvas in Tkinter
def drawData(data, colorlist):
canvas.delete("all")
can_height = 380
can_width = 550
x_width = can_width/(len(data) + 1)
offset = 30
spacing = 10
# normalizing data for rescaling real-valued
# numeric data within the
# given range
normalized_data = [i / max(data) for i in data]
for i, height in enumerate(normalized_data):
# top left corner
x0 = i*x_width + offset + spacing
y0 = can_height - height*340
# bottom right corner
x1 = ((i+1)*x_width) + offset
y1 = can_height
# data bars are generated as Red
# colored vertical rectangles
canvas.create_rectangle(x0, y0, x1, y1,
fill=colorlist[i])
canvas.create_text(x0+2, y0, anchor=SE,
text=str(data[i]))
root.update_idletasks()
# function to initiate the sorting
# process by calling the extension code
def start_algorithm():
global data
if not data:
return
if (algmenu.get() == 'Quick Sort'):
quick_sort(data, 0, len(data)-1, drawData, speedbar.get())
drawData(data, ['Green' for x in range(len(data))])
# creating main user interface frame
# and basic layout by creating a frame
Mainframe = Frame(root, width=600, height=200, bg="Grey")
Mainframe.grid(row=0, column=0, padx=10, pady=5)
canvas = Canvas(root, width=600, height=380, bg="Grey")
canvas.grid(row=1, column=0, padx=10, pady=5)
# creating user interface area in grid manner
# first row components
Label(Mainframe, text="ALGORITHM",
bg='Grey').grid(row=0, column=0,
padx=5, pady=5,
sticky=W)
# algorithm menu for showing the
# name of the sorting algorithm
algmenu = ttk.Combobox(Mainframe,
textvariable=select_alg,
values=["Quick Sort"])
algmenu.grid(row=0, column=1, padx=5, pady=5)
algmenu.current(0)
# creating Start Button to start
# the sorting visualization process
Button(Mainframe, text="START",
bg="Blue",
command=start_algorithm).grid(row=1,
column=3,
padx=5,
pady=5)
# creating Speed Bar using scale in Tkinter
speedbar = Scale(Mainframe, from_=0.10,
to=2.0, length=100, digits=2,
resolution=0.2, orient=HORIZONTAL,
label="Select Speed")
speedbar.grid(row=0, column=2,
padx=5, pady=5)
# second row components
# sizeEntry : scale to select
# the size/number of data bars
sizeEntry = Scale(Mainframe, from_=3,
to=60, resolution=1,
orient=HORIZONTAL,
label="Size")
sizeEntry.grid(row=1, column=0,
padx=5, pady=5)
# minEntry : scale to select the
# minimum value of data bars
minEntry = Scale(Mainframe, from_=0,
to=10, resolution=1,
orient=HORIZONTAL,
label="Minimum Value")
minEntry.grid(row=1, column=1,
padx=5, pady=5)
# maxEntry : scale to select the
# maximum value of data bars
maxEntry = Scale(Mainframe, from_=10,
to=100, resolution=1,
orient=HORIZONTAL,
label="Maximum Value")
maxEntry.grid(row=1, column=2,
padx=5, pady=5)
# creating generate button
Button(Mainframe, text="Generate",
bg="Red",
command=generate).grid(row=0,
column=3,
padx=5,
pady=5)
# to stop automatic window termination
root.mainloop()
Output:
