Python | Numpy ndarray.__array__()
Last Updated : 29 Mar, 2019
Improve
With the help of Python3 1== Python3 1==
ndarray.__array__()
method, we can create a new array as we want by giving a parameter as dtype and we can get a copy of an array that doesn't change the data element of original array if we change any element in the new one.Syntax : ndarray.__array__() Return :Example #1 : In this example we can see that we change the dtype of a new array by just using
- Returns either a new reference to self if dtype is not given
- New array of provided data type if dtype is different from the current dtype of the array.
ndarray.__array__()
method.# import the important module in python
import numpy as np
# make an array with numpy
gfg = np.array([1, 2, 3, 4, 5])
# applying ndarray.__array__() method
geeks = gfg.__array__(float)
print(geeks)
Output:
Example #2 :[ 1. 2. 3. 4. 5.]
# import the important module in python
import numpy as np
# make an array with numpy
gfg = np.array([[1.1, 2, 3.3, 4, 5],
[6, 5.2, 4, 3, 2.2]])
# applying ndarray.__array__() method
geeks = gfg.__array__(int)
print(geeks)
Output:
[[1 2 3 4 5] [6 5 4 3 2]]