Open In App

Data analysis using Pandas

Last Updated : 31 Mar, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Pandas are the most popular python library that is used for data analysis. It provides highly optimized performance with back-end source code purely written in C or Python

We can analyze data in Pandas with:

Pandas Series

Series in Pandas is one dimensional(1-D) array defined in pandas that can be used to store any data type.

Creating Pandas Series

Python3




# Program to create series
 
# Import Panda Library
import pandas as pd
 
# Create series with Data, and Index
a= pd.Series(Data, index=Index)

Here, Data can be:

  1. A Scalar value which can be integerValue, string
  2. A Python Dictionary which can be Key, Value pair
  3. A Ndarray

Note: Index by default is from 0, 1, 2, …(n-1) where n is the length of data.  

Create Series from List

 Creating series with predefined index values.

Python3




# Numeric data
Data= [1,3,4,5,6,2,9]
 
# Creating series with default index values
s= pd.Series(Data)
 
# predefined index values
Index= ['a','b','c','d','e','f','g']
 
si= pd.Series(Data, Index)

Output:

Create Series from List

 

 

Create Pandas Series from Dictionary

Program to Create Pandas series from Dictionary.

Python3




dictionary= {'a':1,'b':2,'c':3,'d':4,'e':5}
 
# Creating series of Dictionary type
sd= pd.Series(dictionary)

Output:

Create Pandas Series from Dictionary

Dictionary type data

Convert an Array to Pandas Series

Program to Create ndarray series.

Python3




# Defining 2darray
Data= [[2,3,4], [5,6,7]]
 
# Creating series of 2darray
snd= pd.Series(Data)

Output:

Convert an Array to Pandas Series

Data as Ndarray

Pandas DataFrames

The DataFrames in Pandas is a two-dimensional (2-D) data structure defined in pandas which consists of rows and columns.

Creating a Pandas DataFrame

Python3




# Program to Create DataFrame
 
# Import Library
import pandas as pd
 
# Create DataFrame with Data
a= pd.DataFrame(Data)

Here, Data can be:

  1. One or more dictionaries
  2. One or more Series
  3. 2D-numpy Ndarray

Create a Pandas DataFrame from multiple Dictionary

Program to Create a Dataframe with two dictionaries.

Python3




# Define Dictionary 1
dict1= {'a':1,'b':2,'c':3,'d':4}
 
# Define Dictionary 2
dict2= {'a':5,'b':6,'c':7,'d':8,'e':9}
 
# Define Data with dict1 and dict2
Data= {'first': dict1,'second': dict2}
 
# Create DataFrame
df= pd.DataFrame(Data)
 
df

Output:

Create a Pandas DataFrame from multiple Dictionary

DataFrame with two dictionaries

Convert list of dictionaries to a Pandas DataFrame

Here, we are taking three dictionaries and with the help of from_dict() we convert them into Pandas DataFrame.

Python3




import pandas as pd
data_c= [
 {'A':5,'B':0,'C':3,'D':3},
 {'A':7,'B':9,'C':3,'D':5},
 {'A':2,'B':4,'C':7,'D':6}]
 
pd.DataFrame.from_dict(data_c, orient='columns')

Output:

    A    B    C    D
0    5    0    3    3
1    7    9    3    5
2    2    4    7    6

Create DataFrame from Multiple Series

Program to create a dataframe of three Series.

Python3




import pandas as pd
 
# Define series 1
s1= pd.Series([1,3,4,5,6,2,9])
 
# Define series 2   
s2= pd.Series([1.1,3.5,4.7,5.8,2.9,9.3])
 
# Define series 3
s3= pd.Series(['a','b','c','d','e'])   
 
# Define Data
Data={'first':s1,'second':s2,'third':s3}
 
# Create DataFrame
dfseries= pd.DataFrame(Data)           
 
dfseries

Output:

Create DataFrame from Multiple Series

DataFrame with three series

Convert a Array to Pandas Dataframe

One constraint has to be maintained while creating a DataFrame of 2D arrays – The dimensions of the 2D array must be the same.

Python3




# Program to create DataFrame from 2D array
 
# Import Library
import pandas as pd
 
# Define 2d array 1
d1=[[2,3,4], [5,6,7]]
 
# Define 2d array 2
d2=[[2,4,8], [1,3,9]]
 
# Define Data
Data={'first': d1,'second': d2}
 
# Create DataFrame
df2d= pd.DataFrame(Data)   
 
df2d

Output:

Convert a Array to Pandas Dataframe

DataFrame with 2d ndarray



Next Article
Article Tags :
Practice Tags :

Similar Reads