Passing function as an argument in Python
In Python, functions are first-class objects meaning they can be assigned to variables, passed as arguments and returned from other functions. This enables higher-order functions, decorators and lambda expressions. By passing a function as an argument, we can modify a function’s behavior dynamically without altering its implementation. For Example:
def process(func, text): # applies a function to text
return func(text)
def uppercase(text): # converts text to uppercase
return text.upper()
print(process(uppercase, "hello"))
Output
HELLO
Explanation: process() applies a given function to text and uppercase() converts text to uppercase. Passing uppercase to process with “hello” results in “HELLO”.
Table of Content
Higher Order Functions
A higher-order function takes or returns another function, enabling reusable and efficient code. It supports functional programming with features like callbacks, decorators, and utilities such as map(), filter(), and reduce().
Example 1 : Basic function passing
# higher-order function
def fun(func, number):
return func(number)
# function to double a number
def double(x):
return x * 2
print(fun(double, 5))
Output
10
Explanation: fun() takes double() as an argument and applies it to 5, returning 10.
Example 2: Passing Built-in Functions
# function to apply an operation on a list
def fun(func, numbers):
return [func(num) for num in numbers]
# using the built-in 'abs' function
a = [-1, -2, 3, -4]
print(fun(abs, a))
Output
[1, 2, 3, 4]
Explanation: abs() is passed to fun(), which applies it to each element in the list, converting negative numbers to positive.
Lambda Functions
A lambda function in Python is a small, anonymous function with a single expression, defined using lambda. It’s often used in higher-order functions for quick, one-time operations.
Example: Lambda Function as an Argument
# function that applies an operation to a number
def fun(func, number):
return func(number)
# passing a lambda function
print(fun(lambda x: x ** 2, 5))
Output
25
Explanation: lambda x: x ** 2 is passed to fun(), which squares the input 5 to produce 25.
Wrapper Functions(Decorators)
A wrapper function (decorator) enhances another function’s behavior without modifying it. It takes a function as an argument and calls it within the wrapper.
Example 1 : Simple decorator
# simple decorator example
def decorator_fun(original_fun):
def wrapper_fun():
print("Hello, this is before function execution")
original_fun()
print("This is after function execution")
return wrapper_fun
@decorator_fun
def display():
print("This is inside the function !!")
# calling the decorated function
display()
Output
Hello, this is before function execution This is inside the function !! This is after function execution
Explanation: decorator_fun wraps the display() function, adding pre- and post-execution messages.
Example 2: Lambda Wrapper Function
def apply_lambda(func, value):
return func(value)
square = lambda x: x ** 2
print("Square of 2 is:", apply_lambda(square, 2))
Output
Square of 2 is: 4
Explanation: apply_lambda() function applies the lambda function lambda x: x ** 2 to 2, returning 4.
Built-in Functions using function arguments
Python provides built-in functions that take other functions as arguments .
Example 1 : map()
a = [1, 2, 3, 4]
res = list(map(lambda x: x * 2, a))
print(res)
Output
[2, 4, 6, 8]
Explanation: map() function applies lambda x: x * 2 to each element in a, doubling all values.
Example 2 : filter()
a = [1, 2, 3, 4, 5]
res = list(filter(lambda x: x % 2 == 0, a))
print(res)
Output
[2, 4]
Explanation: filter() selects even numbers from the list using lambda x: x % 2 == 0.
Example 3: reduce()
from functools import reduce
a = [1, 2, 3, 4]
res = reduce(lambda x, y: x + y, a)
print(res)
Output
10
Explanation: reduce() function applies lambda x, y: x + y cumulatively to elements in a, summing them to 10.