numpy.argmin() in Python
Last Updated : 08 Mar, 2024
Improve
The numpy.argmin() method returns indices of the min element of the array in a particular axis.
Syntax :
numpy.argmin(array, axis = None, out = None)
Parameters :
array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 out : [array optional]Provides a feature to insert output to the out array and it should be of appropriate shape and dtype
Return :
Array of indices into the array with same shape as array.shape with the dimension along axis removed.
Code 1 :
# Python Program illustrating
# working of argmin()
import numpy as geek
# Working on 1D array
array = geek.arange(8)
print("INPUT ARRAY : \n", array)
# returning Indices of the min element
# as per the indices
print("\nIndices of min element : ", geek.argmin(array, axis=0))
Output :
INPUT ARRAY : [0 1 2 3 4 5 6 7] Indices of min element : 0
Code 2 :
# Python Program illustrating
# working of argmin()
import numpy as geek
# Working on 2D array
array = geek.random.randint(16, size=(4, 4))
print("INPUT ARRAY : \n", array)
# returning Indices of the min element
# as per the indices
'''
[[ 8 13 5 0]
[ 0 2 5 3]
[10 7 15 15]
[ 3 11 4 12]]
^ ^ ^ ^
0 2 4 0 - element
1 1 3 0 - indices
'''
print("\nIndices of min element : ", geek.argmin(array, axis = 0))
Output :
INPUT ARRAY : [[ 8 13 5 0] [ 0 2 5 3] [10 7 15 15] [ 3 11 4 12]] Indices of min element : [1 1 3 0]
Code 3 :
# Python Program illustrating
# working of argmin()
import numpy as geek
# Working on 2D array
array = geek.arange(10).reshape(2, 5)
print("array : \n", array)
array[0][0] = 10
array[1][1] = 1
array[0][1] = 1
print("\narray : \n", array)
# Returns min element
print("\narray : ", geek.argmin(array))
# First occurrence of an min element is given
print("\nmin ELEMENT INDICES : ", geek.argmin(array, axis = 0))
Output :
array : [[0 1 2 3 4] [5 6 7 8 9]] array : [[10 1 2 3 4] [ 5 1 7 8 9]] array : 1 min ELEMENT INDICES : [1 0 0 0 0]