Matplotlib.pyplot.sci() in Python
Last Updated : 19 Apr, 2020
Improve
Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot, etc.The sci() function in pyplot module of matplotlib library is used to set the current image.Python3 1== Output:
Example 2:Python3 1== Output: 
matplotlib.pyplot.sci() Function
Syntax: matplotlib.pyplot.sci(im) Parameters:Below examples illustrate the matplotlib.pyplot.sci() function in matplotlib.pyplot: Example 1:Returns: This method does not return any value.
- im: This image will be the target of colormap functions.
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib import colors as mcolors
import numpy as np
N = 50
x = np.arange(N)
ys = [x + i for i in x]
fig, ax = plt.subplots()
ax.set_xlim(0, 20)
ax.set_ylim(0, 20)
line_segments = LineCollection([np.column_stack([x, y]) for y in ys],
linewidths =(0.5, 1, 1.5, 2),
linestyles ='dashed', color ="#eeffdd")
line_segments.set_array(1/(x + 1))
ax.add_collection(line_segments)
line_segments.set_array(x)
plt.sci(line_segments)
plt.title('matplotlib.pyplot.sci() Example')
plt.show()

import matplotlib.pyplot as plt
from matplotlib.collections import EventCollection
from matplotlib.collections import LineCollection
import numpy as np
np.random.seed(19680801)
xvalue = np.random.random([2, 10])
xvalue1 = xvalue[0, :]
xvalue2 = xvalue[1, :]
xvalue1.sort()
xvalue2.sort()
yvalue1 = xvalue1 ** 4
yvalue2 = 1 - xvalue2 ** 6
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(xvalue1, yvalue1, color ='tab:blue')
ax.plot(xvalue2, yvalue2, color ='tab:green')
xresult1 = EventCollection(xvalue1, color ='tab:blue')
yresult1 = EventCollection(yvalue1, color ='tab:blue',
orientation ='vertical')
ax.add_collection(xresult1)
ax.add_collection(yresult1)
plt.sci(xresult1)
plt.title('matplotlib.pyplot.sci() Example')
plt.show()
