Open In App

Matplotlib.pyplot.gcf() in Python

Last Updated : 25 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
 

matplotlib.pyplot.gcf()


matplotlib.pyplot.gcf() is primarily used to get the current figure. If no current figure is available then one is created with the help of the figure() function.
Syntax:
 

matplotlib.pyplot.gcf()


Example 1:

Python3
import numpy as np
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib.pyplot as plot

plot.plot([2, 3, 4])

# implementation of the 
# matplotlib.pyplot.gcf()
# function
figure = plot.gcf().canvas

ag = figure.switch_backends(FigureCanvasAgg)
ag.draw()
A = np.asarray(ag.buffer_rgba())

# Pass off to PIL.
from PIL import Image
img = Image.fromarray(A)

# show image
img.show()

Output: 
 

matplotlib.pyplot.gcf()


Example 2: 
 

Python3
import matplotlib.pyplot as plt
from matplotlib.tri import Triangulation
from matplotlib.es import Polygon
import numpy as np

# helper function to update 
# the polygon
def polygon_updater(tr):
    if tr == -1:
        points = [0, 0, 0]
    else:
        points = tri.triangles[tr]
    x_axis = tri.x[points]
    y_axis = tri.y[points]
    polygon.set_xy(np.column_stack([x_axis, y_axis]))

# helper function to set the motion 
# of polygon
def motion_handler(e):
    if e.inaxes is None:
        tr = -1
    else:
        tr = trifinder(e.xdata, e.ydata)
    polygon_updater(tr)
    e.canvas.draw()


# Making the  Triangulation.
all_angles = 16
all_radii = 5
minimum_radii = 0.25
radii = np.linspace(minimum_radii, 0.95, all_radii)
triangulation_angles = np.linspace(0, 2 * np.pi,
                                   all_angles,
                                   endpoint = False)

triangulation_angles = np.repeat(triangulation_angles[...,
                                                      np.newaxis],
                                 all_radii, axis = 1)

triangulation_angles[:, 1::2] += np.pi / all_angles
a = (radii * np.cos(triangulation_angles)).flatten()
b = (radii * np.sin(triangulation_angles)).flatten()
tri = Triangulation(a, b)
tri.set_mask(np.hypot(a[tri.triangles].mean(axis = 1),
                         b[tri.triangles].mean(axis = 1))
                < minimum_radii)

# Using TriFinder object from 
# Triangulation
trifinder = tri.get_trifinder()

# Setting up the plot and the callbacks.
plt.subplot(111, aspect ='equal')
plt.triplot(tri, 'g-')

 # dummy data for (x-axis, y-axis)
polygon = Polygon([[0, 0], [0, 0]], 
                  facecolor ='b') 
polygon_updater(-1)
plt.gca().add_(polygon)

# implementation of the matplotlib.pyplot.gcf() function
plt.gcf().canvas.mpl_connect('motion_notification',
                             motion_handler)
plt.show()

Output: 
 

matplotlib.pyplot.gcf()


 


Next Article

Similar Reads