Open In App

Limited rows selection with given column in Pandas | Python

Last Updated : 24 Oct, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
Methods in Pandas like iloc[], iat[]are generally used to select the data from a given dataframe. In this article, we will learn how to select the limited rows with given columns with the help of these methods. Example 1: Select two columnsPython3
# Import pandas package 
import pandas as pd 
  
# Define a dictionary containing employee data 
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'], 
        'Age':[27, 24, 22, 32], 
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'], 
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']} 
  
# Convert the dictionary into DataFrame  
df = pd.DataFrame(data) 
  
# select three rows and two columns 
print(df.loc[1:3, ['Name', 'Qualification']])
Output:
     Name Qualification
1  Princi            MA
2  Gaurav           MCA
3    Anuj           Phd
Example 2: First filtering rows and selecting columns by label format and then Select all columns.Python3
# Import pandas package 
import pandas as pd 
  
# Define a dictionary containing employee data 
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'], 
        'Age':[27, 24, 22, 32], 
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'], 
        'Qualification':['Msc', 'MA', 'MCA', 'Phd'] 
       } 

# Convert the dictionary into DataFrame  
df = pd.DataFrame(data) 
  
# .loc DataFrame method 
# filtering rows and selecting columns by label format 
# df.loc[rows, columns] 
# row 1, all columns 
print(df.loc[0, :] )
Output:
Address          Delhi
Age                 27
Name               Jai
Qualification      Msc
Name: 0, dtype: object

Example 3: Select all or some columns, one to another using .iloc.Python3
# Import pandas package 
import pandas as pd 
  
# Define a dictionary containing employee data 
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'], 
        'Age':[27, 24, 22, 32], 
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'], 
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']} 
  
# Convert the dictionary into DataFrame  
df = pd.DataFrame(data) 
  
# iloc[row slicing, column slicing] 
print(df.iloc [0:2, 1:3] )
Output:
   Age    Name
0   27     Jai
1   24  Princi

Next Article

Similar Reads