
postgrespro.ru

Data Compression in 
PostgreSQL

Michael Zhilin
m.zhilin@postgrespro.сom

postgrespro.com



2

About me

Michael Zhilin (@mizhka)

• Performance Engineer since 2008

• Performance Team Lead at PostgresPro since 2020

e-mail: 
m.zhilin@postgrespro.com
mizhka@gmail.com

mailto:m.zhilin@postgrespro.com
mailto:mizhka@gmail.com


3

Agenda

• Compression in general

• Why may database compression be useful?

• Built-in PostgreSQL compression

• Advanced data compression options for PostgreSQL

• Use cases and comparison of each technique’s key advantages

• Q&A session



4

Compression: terms

• Information entropy [1]

○ Measure of data randomness

• Lossless compression

• Key parameters

○ Compression ratio

○ Compression and decompression speed

[1] https://en.wikipedia.org/wiki/Entropy_(information_theory)

https://en.wikipedia.org/wiki/Entropy_(information_theory)


5

Compression: history

• Shannon-Fano (1948-1949) [1]

○ Probability of symbols

• Huffman encoding (1954) [2]

○ minimum encoding

○ binary tree based on frequencies

○ a.k.a. prefix code
[1] https://en.wikipedia.org/wiki/Shannon%E2%80%93Fano_coding

[2] https://en.wikipedia.org/wiki/Huffman_coding

https://en.wikipedia.org/wiki/Shannon%E2%80%93Fano_coding
https://en.wikipedia.org/wiki/Huffman_coding


6

Compression: history

• Lempel-Ziv-Welch (1978-1984) a.k.a. LZ1/LZ2 [1]

○ gif

• Deflate (1991) [2]

○ png, zip, gzip and others

• LZO (1996)

○ very fast decompression: read-only file systems

• LZ4 (2011), Zstandard (2016)
[1] https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch

[2] https://en.wikipedia.org/wiki/Deflate

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/Deflate


7

Compression: algorithms

[1] https://github.com/inikep/lzbench

Algorithm Description Compression Decompression Ratio

deflate old, but good 5-100MBps 10-200MBps 2.8

lzo quick deco 8MBps 850MBps 2.8

lz4 fastest 780MBps 4500MBps 2.1

zstd good balance 480MBps 1200MBps 2.8

lzbench [1] & Silesia corpus

https://github.com/inikep/lzbench


8

• Saving disk space

○ This is essential for multi-TB databases

• Saving memory, improving caching

• Reducing amount of disk I/O operations

○ Improves throughput (more queries per second)

○ Improves latency (faster response times)

Why may DB compression be useful?



9

Why may DB compression be useful?

Trade-off

• Performance degradation

○ Requires more CPU resources and time

• Compatibility issues



10

Built-in Postgres compression: 
what to compress?

• Database instance files

○ relations (tables, indexes, TOAST)

○ write-ahead logs (recovery, replication, backups)

• Others

○ backup files (wal-g, probackup, pg_backrest)

○ logical dumps (pg_dump)



11

Built-in Postgres compression: 
tuples

• Tuple fields are compressed if their size > 2K bytes

○ In-line storage for short compressed fields

○ TOAST storage for big compressed fields

• Algorithm

○ PGLZ

○ LZ4 since PostgreSQL 14



12

Built-in Postgres compression: 
B-Tree index

• B-Tree index key deduplication

○ since PostgreSQL 12

○ since PostgresPro 10

• Storing posting lists of TIDs



13

Built-in compression: WAL FPI

• wal_compression=on

• Since PostgreSQL 9.5

• Only “full-page image” compression

• Algorithm

○ PGLZ

○ LZ4 since PostgreSQL 15 (the upcoming release)



14

Built-in compression: what’s missing…

• Heap value deduplication [1]

• Index key compression

• Fast TOAST

[1] 
https://www.postgresql.eu/events/pgconfeu2019/sessions/session/2671/slides/263/Data_Com
pression_in_PostgreSQL_and_its_future_noscript.pdf

https://www.postgresql.eu/events/pgconfeu2019/sessions/session/2671/slides/263/Data_Compression_in_PostgreSQL_and_its_future_noscript.pdf
https://www.postgresql.eu/events/pgconfeu2019/sessions/session/2671/slides/263/Data_Compression_in_PostgreSQL_and_its_future_noscript.pdf


15

Advanced data compression options

Columnar storage

• GreenPlum & ZedStore (fork) by GreenPlum

• Citus Columnar & cstore_fdw (extension) by Citus

• Various compression options:

○ Append-only optimizations

○ lz4, zstd, zlib, rle

There is set of limitations (check documentation)
No index compression



16

Advanced data compression options

Compressed filesystems

• OpenZFS (Zettabyte filesystems) [1]

• lz4, zstd, tuning parameters

• Transparent for database

Copy-on-write: possible slowness and bad scalability
Requires configuration skills and tuning for database engines
[1] https://openzfs.readthedocs.io/en/latest/performance-tuning.html#postgresql 

https://openzfs.readthedocs.io/en/latest/performance-tuning.html#postgresql


17

Advanced data compression options

PostgresPro CFS [1]

• Designed for PostgreSQL page-organized files (tables, indexes)

• Transparent page compression

• Easy configuration, separate tablespace

• lz4, zstd, zlib, pglz

Brings simplicity and power of compression in one shot.
Available in Postgres Pro Enterprise 9.6+
[1] https://postgrespro.com/docs/enterprise/13/cfs-usage

https://postgrespro.com/docs/enterprise/13/cfs-usage


18

Use cases and comparison

#1: Small-size deployment

• <500GB database size

• <500 tps / qps

• <16 vCPU

• <64 GB RAM

Built-in compression is a good choice!



19

Use cases and comparison

#2: Middle-size deployment

• <20TB database size

• <5000 tps / qps

• <128 vCPU

• <512 GB RAM

Consider advanced techniques to speed up queries and save 
storage space.



20

Use cases and comparison

#3: Huge deployment

• >20TB of various data

• >5000 tps / qps

It is strongly recommended to use compression techniques!



21

Use cases and comparison

#4: lots of files stored in the database (e.g. PDF files or photos)

• Tuple compression and TOAST are used

• Compression rate is good, but performance is poor.

Alternative: store files outside the database and keep only meta 
information in database tables.



22

Use cases and comparison

#5: full selections done on a small number of columns (a kind of 
analytics DB)

• No indexes on columns

• No built-in compression and deduplication

Columnar store is the best choice.



23

Use cases and comparison

#6: encrypted data

• Encryption increases the entropy of data

• No built-in encryption mechanisms

Compression should be done first, before encryption.



24

Next event: February 24, 2022

https://www.eventbrite.co.uk/e/postgres-pro-on-azure-2022-tickets-247481954187

https://www.eventbrite.co.uk/e/postgres-pro-on-azure-2022-tickets-247481954187


25

postgrespro.com

Questions?


