

Data Compression in PostgreSQL

postgrespro.com

Michael Zhilin m.zhilin@postgrespro.com

Michael Zhilin (@mizhka)

- Performance Engineer since 2008
- Performance Team Lead at PostgresPro since 2020

e-mail: <u>m.zhilin@postgrespro.com</u> <u>mizhka@gmail.com</u>

Agenda

- Compression in general
- Why may database compression be useful?
- Built-in PostgreSQL compression
- Advanced data compression options for PostgreSQL
- Use cases and comparison of each technique's key advantages
- Q&A session

Compression: terms

- Information entropy [1]
 - Measure of data randomness
- Lossless compression
- Key parameters
 - Compression ratio
 - Compression and decompression speed

[1] https://en.wikipedia.org/wiki/Entropy_(information_theory)

Compression: history

- Shannon-Fano (1948-1949) [1]
 - Probability of symbols
- Huffman encoding (1954) [2]
 - minimum encoding
 - binary tree based on frequencies
 - a.k.a. prefix code

[1] https://en.wikipedia.org/wiki/Shannon%E2%80%93Fano_coding

[2] <u>https://en.wikipedia.org/wiki/Huffman_coding</u>

Compression: history

- Lempel-Ziv-Welch (1978-1984) a.k.a. LZ1/LZ2 [1]
 - \circ gif
- Deflate (1991) [2]
 - $\circ~$ png, zip, gzip and others
- LZO (1996)
 - very fast decompression: read-only file systems
- LZ4 (2011), Zstandard (2016)

[1] https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch

[2] https://en.wikipedia.org/wiki/Deflate

Compression: algorithms

Izbench [1] & Silesia corpus

Algorithm	Description	Compression	Decompression	Ratio
deflate	old, but good	5-100MBps	10-200MBps	2.8
Izo	quick deco	8MBps	850MBps	2.8
lz4	fastest	780MBps	4500MBps	2.1
zstd	good balance	480MBps	1200MBps	2.8

[1] <u>https://github.com/inikep/lzbench</u>

Why may DB compression be useful?

- Saving disk space
 - This is essential for multi-TB databases
- Saving memory, improving caching
- Reducing amount of disk I/O operations
 - Improves throughput (more queries per second)
 - Improves latency (faster response times)

Why may DB compression be useful?

Trade-off

- Performance degradation
 - Requires more CPU resources and time
- Compatibility issues

Built-in Postgres compression: what to compress?

- Database instance files
 - relations (tables, indexes, TOAST)
 - write-ahead logs (recovery, replication, backups)
- Others
 - backup files (wal-g, probackup, pg_backrest)
 - logical dumps (pg_dump)

Built-in Postgres compression: tuples

- Tuple fields are compressed if their size > 2K bytes
 - In-line storage for short compressed fields
 - TOAST storage for big compressed fields
- Algorithm
 - **PGLZ**
 - LZ4 since PostgreSQL 14

Built-in Postgres compression: B-Tree index

- B-Tree index key deduplication
 - since PostgreSQL 12
 - since PostgresPro 10
- Storing posting lists of TIDs

Built-in compression: WAL FPI

- wal_compression=on
- Since PostgreSQL 9.5
- Only "full-page image" compression
- Algorithm
 - **PGLZ**
 - LZ4 since PostgreSQL 15 (the upcoming release)

- Heap value deduplication [1]
- Index key compression
- Fast TOAST

[1] https://www.postgresql.eu/events/pgconfeu2019/sessions/session/2671/slides/263/Data_Com pression_in_PostgreSQL_and_its_future_noscript.pdf

Advanced data compression options

Columnar storage

- GreenPlum & ZedStore (fork) by GreenPlum
- Citus Columnar & cstore_fdw (extension) by Citus
- Various compression options:
 - Append-only optimizations
 - Iz4, zstd, zlib, rle

There is set of limitations (check documentation) No index compression

Compressed filesystems

- OpenZFS (Zettabyte filesystems) [1]
- Iz4, zstd, tuning parameters
- Transparent for database

Copy-on-write: possible slowness and bad scalability Requires configuration skills and tuning for database engines

[1] <u>https://openzfs.readthedocs.io/en/latest/performance-tuning.html#postgresql</u>

PostgresPro CFS [1]

- Designed for PostgreSQL page-organized files (tables, indexes)
- Transparent page compression
- Easy configuration, separate tablespace
- Iz4, zstd, zlib, pglz

Brings simplicity and power of compression in one shot. Available in Postgres Pro Enterprise 9.6+

[1] <u>https://postgrespro.com/docs/enterprise/13/cfs-usage</u>

#1: Small-size deployment

- <500GB database size</p>
- <500 tps / qps
- <16 vCPU
- <64 GB RAM

Built-in compression is a good choice!

#2: Middle-size deployment

- <20TB database size
- <5000 tps / qps</p>
- <128 vCPU
- <512 GB RAM

Consider advanced techniques to speed up queries and save storage space.

#3: Huge deployment

- >20TB of various data
- >5000 tps / qps

It is strongly recommended to use compression techniques!

#4: lots of files stored in the database (e.g. PDF files or photos)

- Tuple compression and TOAST are used
- Compression rate is good, but performance is poor.

Alternative: store files outside the database and keep only meta information in database tables.

#5: full selections done on a small number of columns (a kind of analytics DB)

- No indexes on columns
- No built-in compression and deduplication

Columnar store is the best choice.

#6: encrypted data

- Encryption increases the entropy of data
- No built-in encryption mechanisms

Compression should be done first, before encryption.

Next event: February 24, 2022


https://www.eventbrite.co.uk/e/postgres-pro-on-azure-2022-tickets-247481954187

Questions?

postgrespro.com

