
Using Logic Programming to Recover C++ Classes
and Methods from Compiled Executables

Edward J. Schwartz

Carnegie Mellon University

Software Engineering Institute

eschwartz@cert.org

Cory F. Cohen

Carnegie Mellon University

Software Engineering Institute

cfc@cert.org

Michael Duggan

Carnegie Mellon University

Software Engineering Institute

mwd@cert.org

Jeffrey Gennari

Carnegie Mellon University

Software Engineering Institute

jsg@cert.org

Jeffrey S. Havrilla

Carnegie Mellon University

Software Engineering Institute

jsh@cert.org

Charles Hines

Carnegie Mellon University

Software Engineering Institute

hines@cert.org

ABSTRACT
High-level C++ source code abstractions such as classes and meth-

ods greatly assist human analysts and automated algorithms alike

when analyzing C++ programs. Unfortunately, these abstractions

are lost when compiling C++ source code, which impedes the un-

derstanding of C++ executables. In this paper, we propose a sys-

tem, OOAnalyzer, that uses an innovative new design to statically

recover detailed C++ abstractions from executables in a scalable

manner.

OOAnalyzer’s design is motivated by the observation that many

human analysts reason about C++ programs by recognizing simple

patterns in binary code and then combining these findings using

logical inference, domain knowledge, and intuition. We codify this

approach by combining a lightweight symbolic analysis with a flexi-

ble Prolog-based reasoning system. Unlike most existing work, OO-

Analyzer is able to recover both polymorphic and non-polymorphic

C++ classes. We show in our evaluation that OOAnalyzer assigns

over 78% of methods to the correct class on our test corpus, which

includes both malware and real-world software such as Firefox and

MySQL. These recovered abstractions can help analysts understand

the behavior of C++ malware and cleanware, and can also improve

the precision of program analyses on C++ executables.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering;Mal-
ware and its mitigation;

KEYWORDS
software reverse engineering; binary analysis; malware analysis

ACM Reference Format:
Edward J. Schwartz, Cory F. Cohen, Michael Duggan, Jeffrey Gennari, Jeffrey

S. Havrilla, and Charles Hines. 2018. Using Logic Programming to Recover

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243793

C++ Classes and Methods from Compiled Executables . In 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18), October
15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3243734.3243793

1 INTRODUCTION
Spurred by advances in computer hardware, modern software con-

tinues to rapidly grow in complexity, and shows no sign of slowing.

To cope with this increasing complexity, software engineers have

turned to object oriented (OO) programming languages, such as

C++, which provide a natural framework of high-level abstrac-

tions for constructing large and complex applications. The OO

programming paradigm focuses on sophisticated, user-created data

structures known as classes that bind related data (members) and

operations (methods) together. This organization of related data

and operations largely enables developers to manage C++ source
code more effectively and build more complex software.

Unfortunately, like its predecessor, C++ allows programmers to

perform dangerous operations in the spirit of enabling speed and

flexibility over security. It is thus no surprise that vulnerabilities

in C++ software are a common occurrence, as developers race to

develop larger, more complex programs in a potentially insecure

language. More surprisingly, malware authors are increasingly writ-

ing their malicious code in C++ (e.g., Duqu, Stuxnet, and Flamer)

to leverage its engineering benefits as well.

Further compounding these problems is the fact that the high-

level abstractions of C++ objects are lost during the compilation

process, which makes analyzing C++ executables difficult for human

analysts and automated algorithms alike. For example, an algorithm

searching for use-after-free vulnerabilities requires knowledge of
object constructors [7], and an analyst attempting to understand a

malware sample’s behavior would greatly benefit from knowing

which methods are on related classes [9]. Researchers have also

demonstrated that many exploit protections are more effective with

C++ abstractions, and that the level of protection and efficiency

improves with the accuracy of the C++ abstractions. For example, re-

searchers in executable-level control-flow integrity (CFI) protection

systems [1, 35] have recently shown that the overall level of protec-

tion against exploits can be significantly improved by incorporating

knowledge of C++ abstractions [8, 19, 21, 34]. Although there are

existing systems that can recover C++ abstractions from executa-

bles, most of them rely on virtual function tables (vftables) as their

https://doi.org/10.1145/3243734.3243793
https://doi.org/10.1145/3243734.3243793

primary source of information, and as a result only consider poly-

morphic classes (i.e., classes with virtual methods) [6–10, 15, 19, 33].

In this paper, we address this limitation by developing a new

system, OOAnalyzer, that can accurately recover detailed C++ ab-

stractions about all classes andmethods, including the list of classes,

the methods on each class, the relationships (e.g., inheritance) be-
tween classes, and a list of special methods such as constructors and

virtual methods. OOAnalyzer avoids the limitations of prior work

by leveraging a sophisticated reasoning system that incorporates

information from a variety of sources, including some that yield

information about all types of classes (i.e., not just polymorphic

classes). For example, OOAnalyzer can observe actions on object

pointers, such as method invocations, to learn the relationships

between methods and classes, and this information pertains to any

method that is invoked in the target program.

OOAnalyzer’s design is motivated by the observation that many

human analysts reason about C++ programs in an incremental

fashion [23, 27]. In particular, they often make simple, low-level

findings by spotting patterns in binary code, and then combine

these findings using logical inference, domain knowledge, and in-

tuition. OOAnalyzer employs a lightweight static symbolic binary

analysis and a Prolog-based inference system to codify the human

analyst approach, allowing it to efficiently search for code patterns

that are indicative of higher-level OO program properties. More

importantly, OOAnalyzer’s inference system also allows it to reason
hypothetically through ambiguous scenarios. When OOAnalyzer

is stuck and cannot make progress, it can temporarily promote an

uncertain property about the program to higher certainty, enabling

OOAnalyzer to reason about the new scenario as if it was true. If

that scenario leads to a contradiction, OOAnalyzer uses Prolog’s

ability to backtrack to search for an alternate reasoning path. This

ability is critical for reasoning about OO programs, which often con-

tain ambiguous properties that need to be resolved before reasoning

can progress effectively.

OOAnalyzer’s inference system allows it to scale to large, real-

world programs such as Firefox and MySQL. Because its reasoning

component can cope with incomplete, contradictory and ambiguous

facts, we designed OOAnalyzer to use a simple but scalable static

symbolic analysis to generate the initial facts that serve as the basis

for higher level reasoning. OOAnalyzer also gains scalability by

reasoning about OO properties in the domain and language of high-

level OO abstractions, rather than reasoning purely on detailed,

low-level executable semantics.

We also propose a new edit distance metric for evaluating the

quality of recovered C++ abstractions. Most existing systems re-

cover classes by discovering vftables, whichmakes evaluation trivial

because each vftable can be mapped to its corresponding source

code class and compared. Because OOAnalyzer can recover non-

polymorphic classes, which do not have a corresponding natural

identifier such as vftables, there is not always a clear correspon-

dence between the classes that OOAnalyzer recovers and those in

the source code. Edit distance allows us to evaluate the quality of

our results without this correspondence. Using our new metric, we

show in our evaluation that, on average, OOAnalyzer places over

78% of methods on the correct class, and can distinguish construc-

tors with an average recall and precision of 0.88 and 0.88.

In summary, the contributions of our paper are:

(1) We design and implement OOAnalyzer, a system for recover-

ing detailed C++ abstractions from executables in a scalable

manner. OOAnalyzer recovers information about all classes
and methods, including non-polymorphic classes.

(2) We propose using edit distance as a metric for evaluating

the quality of C++ abstractions returned by systems such as

OOAnalyzer. We show that debug symbols can be used to

generate the ground truth for this comparison.

(3) We evaluate OOAnalyzer on malware samples and well-

known cleanware programs including Firefox and MySQL.

We show that OOAnalyzer is able to accurately recover most

C++ classes and their methods (78% of methods on average),

and can identify special methods such as constructors, de-

structors, vftables, and virtual methods (average F-scores of

0.87, 0.41, 0.97, and 0.88).

2 BACKGROUND
We assume that readers are familiar with the basic concepts of

C++ such as classes, methods, and members. In this section, we

review the more advanced features of C++ that are pertinent to the

design of OOAnalyzer, and briefly discuss how Microsoft Visual

C++ implements these features. For more information, we refer the

reader to other sources [11].

2.1 Virtual Functions
Sometimes a programmer may wish to invoke a method on an

object without knowing the object’s exact type, in which case we

say the method and class are both polymorphic. For example, a

configuration file may select the class that implements an object. In

C++, polymorphic methods are known as virtual functions. When a

virtual function is invoked, its implementation is selected at runtime

based on the object’s type (instead of the type of the pointer to the

object).

Virtual functions are implemented by including an implicit class

member that points to the virtual function table (vftable) for the
object. The virtual function table contains an entry for each vir-

tual function that can be called on objects of that type. Visual C++

computes these virtual function tables at compile time, and a con-

structor or destructor may use code like the following to install a
vftable into the current object:

mov eax, objptr
mov [eax], vftableptr

Many related works rely on virtual function tables as their primary

source of information, and as a result can only recover information

about polymorphic classes or virtual functions [6–10, 15, 19, 33].

2.2 Class Relationships
A program’s classes can relate to one another in a variety of ways.

The two most common relationships are inheritance and compo-

sition. When class A inherits from class B, most members and

methods on class B will be automatically pulled into the definition

of class A. Class A is usually called the derived class, and class B is

called the base class. Inheritance is often used in practice to mini-

mize code duplication by factoring shared code into base classes

that are inherited by derived classes with more specific behaviors.

The other type of relationship is composition. Class A is composed

Executable

Fact

Exporter

Forward

Reasoning

Hypothetical

Reasoning

Consistency

Checking
C++ Abstractions

Prolog-based Reasoning Component

Figure 1: The system-level design of OOAnalyzer. OOAnalyzer exports low-level facts for an executable using a lightweight
symbolic analysis. Prolog-based reasoning then deduces new facts, makes hypothetical assertions (e.g., guesses) to address
ambiguous properties, and validates the consistency of the C++ abstractions model. The final model is provided to the user
when it is consistent and no proposed guesses remain.

of class B when class A stores an object of class B as a data mem-

ber. Class A can access class B’s public functionality through the

object’s methods and members.

2.3 Method Implementation and thiscall
C++ methods are implemented as special functions that reserve a

parameter for the object on which the method is being invoked [11].

Most C++ methods are implemented using the thiscall calling

convention, which passes the object pointer in the ecx register. This
is important because such methods can be detected by observing

that a function appears to access an object through the ecx register.

2.4 Runtime Type Identification
RTTI is optional metadata that is used to implement C++ type

introspection features such as dynamic_cast and typeid. RTTI
data structures include information such as each class’s name and

base classes. Only polymorphic classes have RTTI records and

malware authors sometimes disable RTTI during compilation if the

program does not utilize the introspection features. Some related

work relies on RTTI as its primary source of information [33].

3 DESIGN
OOAnalyzer’s design is largely motivated by the observation that

human analysts often reverse engineer complex programs incremen-
tally by combining logic, domain knowledge, and intuition [23, 27].

Specifically, analysts often start by developing a rough mental

model of the program by “skimming” for common patterns that

indicate or suggest specific C++ abstractions. Some patterns are

strong enough that the analyst may immediately conclude a new

fact about the program. In other cases, the pattern only suggests

that the program may have a particular property, in which case

the analyst often makes an educated guess that the program has

the property. After making an educated guess, if the analyst later

encounters conflicting evidence, she revises her guess. As the an-

alyst observes and concludes more facts about the program that

do not contradict each other, she becomes more confident in her

knowledge about the program.

3.1 Design Goals and Motivations
3.1.1 Support for Non-polymorphic Classes. Most existing work

on recovering C++ abstractions relies on the presence of virtual

function tables, and as a result can only recover information about

polymorphic classes [6–10, 15, 19, 33]. We designed OOAnalyzer so

that it can reason about all classes and methods. As a consequence,

OOAnalyzer cannot use vftables as class identifiers since not all

classes will have them. Instead, it represents classes as the set of

methods defined on the class. Another important consequence is

that even though vftables provide valuable evidence about method-

to-class assignments for virtual functions [10], OOAnalyzer cannot

rely solely on this source of evidence. Instead, OOAnalyzer primar-

ily assigns methods to classes by observing method calls on object

pointers as they flow throughout the program. When a group of

methods is invoked on the same object pointer, those methods must

be defined on that object’s class or one of its base classes.

3.1.2 Logic Programming to Resolve Ambiguity. Some C++ prop-

erties are ambiguous at the executable level, which makes educated

guessing an important part of recovering C++ abstractions. Am-

biguous properties occur because programs with distinct C++ ab-

stractions can have equivalent run-time (i.e., executable) semantics

and thus can result in identical executables. To allow OOAnalyzer

to make and recover from educated guesses, OOAnalyzer features

Prolog prominently in its design. Prolog is used both as a mecha-

nism for succinctly encoding the rules that comprise OOAnalyzer’s

reasoning process and as a strategy to search for a consistent model

of the program. OOAnalyzer also takes full advantage of Prolog’s

backtracking capabilities, which allows it to cope with faulty as-

sumptions and guesses. Whenever an inconsistency in reasoning

is detected, Prolog allows OOAnalyzer to backtrack or “rewind”

any reasoning performed since the last guess that was made. We

show in Section 6.4 that without the ability to make and recover

from educated guesses, OOAnalyzer’s average error rate balloons

significantly (from 21.8% to 81%).

3.2 Design Overview
OOAnalyzer formalizes and automates the incremental reasoning

approach by combining a lightweight static symbolic binary anal-

ysis with a flexible Prolog-based reasoning framework. As can be

seen in Fig. 1, OOAnalyzer takes an executable program as input,

and first extracts low-level facts that form the basis of reasoning. It

then deduces new facts that are implied by the current facts using

forward reasoning rules until it can reach no new conclusions. It

then identifies an ambiguous property for which a direct deduction

is not possible, and hypothetically asserts, or guesses, a fact about
that property. After asserting the fact, it deduces the consequences

of the guess by returning to forward reasoning. When it can reach

no new conclusions, it finally validates the consistency of the C++

abstractions model. If the model is inconsistent, OOAnalyzer sys-

tematically revisits the guesses that it made through hypothetical

reasoning, starting with the most recent one. When the current

model is internally consistent and no proposed guesses remain,

OOAnalyzer outputs the discovered model for the user.

3.2.1 Executable Fact Exporter. The executable fact exporter is
responsible for performing the “traditional” binary analysis steps

of disassembling and lifting assembly instructions to a semantic

representation, partitioning the instructions into separate functions,

and conducting semantic analysis. There are many ways to perform

semantic analysis, and in the interest of scalability, OOAnalyzer uses

a lightweight symbolic analysis. OOAnalyzer also makes a number

of simplifying assumptions that are characteristic of executables

emitted by a reasonable compiler [11].

The facts generated by the fact exporter are called initial facts.
They generally describe low-level program behaviors, such as call-

ing a method on an object pointer, and these behaviors form the

foundation on which all other conclusions in the system are based.

These facts are approximations, and most have one sided errors. As

a result, most of OOAnalyzer’s rules assume that initial facts are
“low confidence.” Informally, this means that they need to be vali-

dated or corroborated by other facts before they should be utilized,

since they could be wrong!
1
All initial facts are static, meaning

that they are not modified during the later reasoning stages of

OOAnalyzer.

3.2.2 Forward Reasoning. OOAnalyzer reasons about the pro-
gram by matching a built-in set of rules over facts in the fact base.

Each reasoning rule is an inference rule that has one or more pre-

conditions and a conclusion. If all of the preconditions are satisfied

by the fact base, then the conclusion is added to the fact base. Ini-

tially, the fact base consists of only the initial facts that are emitted

by the executable fact exporter. As reasoning proceeds, more facts

are added by forward reasoning and hypothetical reasoning.

The facts emitted by forward and hypothetical reasoning are

called entity facts. Unlike initial facts, which typically describe a

property of executable semantics, entity facts describe an aspect of

the C++ abstractions that our system is attempting to recover, and

intermediate conclusions about those properties. Entity facts are

dynamically asserted and retracted as the model of the program

evolves during the reasoning process.

3.2.3 Hypothetical Reasoning. Sometimes OOAnalyzer is un-

able to reach new forward reasoning conclusions before important

properties about the program are resolved. To continue making

progress in these scenarios, OOAnalyzer identifies an ambiguous

property and makes an educated guess about it, which we call hy-
pothetical reasoning. OOAnalyzer has hypothetical reasoning rules

that function similarly to forward reasoning rules, but instead de-

scribe the ambiguous situations in which OOAnalyzer should make

its guesses. The analysis of the program is complete only when

all ambiguous properties have been resolved. Since hypothetical

rules only provide educated guesses for ambiguous properties, it is

possible for an incorrect guess to introduce inconsistencies in the

model of the program. As a result, the model must pass consistency

checks before the resulting entity fact is accepted.

3.2.4 Consistency Checking. When OOAnalyzer detects an in-

consistency in the current fact base it backtracks and systematically

revisits the earlier guesses that have been made, starting with the

1
“Wrong fact” is obviously an oxymoron, but we use fact to denote a piece of evidence,
rather than something that is indisputable. In other words, we use fact synonymously

with belief.

most recent one. Consistency checks are implemented by a special

set of rules that detect contradictions instead of asserting new facts.

Conceptually, consistency rules could be implemented as con-

straints that block forward reasoning and hypothetical rules from

making inconsistent conclusions. But this design would not allow

OOAnalyzer to backtrack and correct the root cause of the prob-

lem (i.e., a bad guess), which may have occurred much earlier. By

separating our consistency rules and forcing OOAnalyzer to back-

track when they are violated, it allows OOAnalyzer to utilize the

conclusions of forward reasoning but revert them when they lead

to an inconsistent state.

4 REASONING SYSTEM
4.1 Symbolic Analysis
OOAnalyzer’s fact exporter employs a lightweight symbolic anal-

ysis that is provided as one of the features of the Pharos binary

analysis framework (Section 5). Pharos’s symbolic analysis attempts

to represent the final values of registers and memory at the end

of a function as symbolic expressions in terms of the function’s

symbolic inputs. For example, if a function increments eax and the

initial symbolic value of eax is represented as eax_init, the out-
put state for eax would be eax_init + 1. Each function’s symbolic

summary is computed using a lightweight, intra-procedural, path-

and flow-sensitive data-flow algorithm. (Inter-procedural reasoning
occurs later in the Prolog part of the system; see Section 4.2 for de-

tails.) OOAnalyzer also uses auxiliary analyses in Pharos that track

the propagation of object pointers and identify calling conventions

(Section 4.2).

OOAnalyzer’s symbolic analysis is designed to be lightweight

and scalable, and as a result, differs from conventional binary sym-

bolic analysis [4, 5, 25, 26] in many ways. First, OOAnalyzer does

not use SMT constraint solvers to reason about whether a partic-

ular program execution is feasible. Instead, OOAnalyzer assumes

all execution paths are feasible. OOAnalyzer reasons about each

path separately (i.e., it is path-sensitive), but prevents exponential
path explosion [25] by only unrolling loops for five iterations and

setting thresholds on the maximum size of symbolic expressions.

The memory model decides if two symbolic memory addresses alias

by seeing if the symbolic memory address expressions are equal

after applying simplification and normalization rules.

Despite its simplicity, OOAnalyzer’s symbolic analysis performs

well for two reasons. First, most initial facts describe compiler

written code that manipulates entities such as object pointers and

virtual function tables, and such code seldom employs complicated

loops, branches, or memory dereferences that are a bane to more

general static binary analysis. Second, even when the symbolic

analysis does make a noticeable mistake, the later components of

OOAnalyzer can usually detect and recover from it.

4.2 Initial Facts
As we explained in Section 3.2.1, initial facts are emitted by the fact

exporter and generally describe low-level program behaviors such

as computing an offset into the current method’s object or calling a

method using an object pointer. Table 1 provides a brief summary

of selected initial facts and examples of assembly code patterns that

would produce them.

Predicate Name Description Assembly Code Example

ObjPtrAllocation(I, F, P, S) Instruction I in function F allocates S bytes of memory for the

object pointed to by P.
push 28h
call operator new

ObjPtrInvoke(I, F, P, M) Instruction I in function F calls methodM on the object pointed to

by P.
mov ecx, objptr
call M

ObjPtrOffset(P1, O, P2) Object pointer P2 points to P1 + O. This usually indicates the

presence of object composition.

mov ecx, objptr
add ecx, 10h

MemberAccess(I, M, O, S) Instruction I in method M accesses S bytes of memory at offset O
from the object pointer. This generally indicates the size and offset

of a member.

mov ecx, objptr
mov ebx, [ecx+0ch]

ThisCallMethod(M, P) MethodM receives the object pointed to by P in the ecx register,
which indicates the method expects to be called with thiscall.

Not applicable.

NoCallsBefore(M) No methods are called on an object pointer before method M,

which is often indicative of constructors.

Not applicable.

ReturnsSelf(M) MethodM returns the object pointer that was passed as a parameter.

This code pattern is required for constructors.

mov eax, objptr
retn

UninitializedReads(M) Method M reads members before writing to them, which is not

typical of constructors.

Not applicable.

PossibleVFTableEntry(VFT, O, M) It is possible that methodM is at offset O in vftable VFT. Not applicable.

Table 1: A list of selected initial fact predicates produced by OOAnalyzer’s fact exporter. Initial facts form the basis upon
which OOAnalyzer’s reasoning system operates.

One of the most important categories of initial facts describes

the creation, manipulation, and usage of object pointers. These

facts enable OOAnalyzer to reason about relationships between

classes and methods without relying on RTTI or vftables, unlike

most prior work. Using its symbolic analysis, OOAnalyzer assigns

a unique token to each object pointer that appears to be passed to a

function using the thiscall calling convention, and then records

when such pointers are allocated (ObjPtrAllocation), invoked on

a method (ObjPtrInvoke), or created at an offset from an existing

object pointer (ObjPtrOffset). The last fact often reveals an object

instance being stored as a class member (i.e., composition). Finally,

to enable inter-procedural reasoning about object pointers, the

ThisCallMethod fact links methods to the symbolic object pointers

they are invoked on.

Another important group of initial facts are those used to ac-

tivate hypothetical reasoning rules, which in turn produce high-

confidence entity facts. The group of initial facts that are used to

identify constructors is a good example. If a method is always the

first to be called on an object (NoCallsBefore), returns the object
pointer that is passed to it (ReturnsSelf), and does not read from

any data members in the object (UninitializedReads), then it is

likely to be a constructor, and hypothetical reasoning will use these

facts to assert a Constructor fact and hypothetically reason about

the consequences. Most entity facts have a corresponding possible
initial fact that triggers hypothetical reasoning about that entity,

which is discussed further in the next section. For space reasons,

we do not include all initial facts in Table 1, but they can be found

in the OOAnalyzer source repository [18].

4.3 Entity Facts
As mentioned in Section 3.2.2, entity facts describe properties of the

abstract entities such asmethods, virtual function tables, and classes

that comprise the C++ abstractions which OOAnalyzer recovers.

Entity facts can be roughly organized by the type of entity they

describe, which includes (1) methods; (2) virtual function tables and

virtual base tables; (3) class relationships; (4) sizes; and (5) classes.

Table 2 displays the list of selected entity facts with this ordering.

Most entity facts have at least one corresponding initial fact
that triggers reasoning about that entity. For example, the fact

exporter identifies possible vftables in memory by scanning for ad-

jacent entries that could plausibly be code addresses and emits these

as low-confidence initial PossibleVFTableEntry facts. If reasoning

rules corroborate their existence in the current model, OOAnalyzer

dynamically asserts entity facts such as VFTableEntry to confirm

the existence and contents of the table. This two-tier reasoning is

used for many of the entity facts.

Class relationships are described by several facts. The Derived-
Class fact reflects that a class inherits from another class, while

the ComposedObject fact indicates composition. Because inheri-

tance and composition often look similar at the executable level,

OOAnalyzer also uses an intermediate fact, ObjectInObject, which
is true when DerivedClass or ComposedObject is true, but not both
(i.e.,DerivedClass⊕ComposedObject). Finally, the factHasNoBase
explicitly expresses that a class does not inherit from another class.

Some rules are able to prove the existence of a base class with-

out actually identifying the specific class, which is expressed as

¬HasNoBase.
Size facts bound the potential sizes of classes and vftables. Con-

straints on the sizes of classes (ClassSize) are obtained from al-

locations and member composition, and can be used to disprove

certain inheritance relationships based on the observation that a

smaller class cannot be derived from a larger class. The size of

vftables (VFTableSize) can also be bounded. For example, a vftable

cannot be so large that it overlaps with another known vftable,

and a derived class’s vftable cannot be smaller than its base class’s

vftable.

OOAnalyzer represents classes as sets of methods to allow it

to reason about non-polymorphic classes, which do not have a

Predicate Name Description

Method(M) Method M is an OO method on a class or struct. It is passed an object pointer.

Constructor(M) MethodM is an object constructor. It initializes objects, but does not allocate memory for the

object.

Destructor(M) Method M is an object destructor. It deinitializes objects, but does not free their memory.

DeletingDestructor(M) MethodM is a deleting destructor. It calls a “real” destructor before deallocating the object’s

memory.

VirtualMethodCall(I, F, P, VFT, O) Instruction I in function F virtually invokes the method at offset O of the vftable VFT on pointer

P.
VFTable(VFT) VFT is a virtual function table. (There are similar rules for virtual base tables.)

VFTableInstall(I, M, O, VFT) Instruction I in methodM installs vftable VFT at offset O of the current object.

VFTableEntry(VFT, O, M) Offset O in vftable VFT contains a pointer to methodM.

DerivedClass(Cld , Clb , O) Class Cld inherits from class Clb . The members of Clb are stored at offset O of Cld .
ComposedObject(Clo , Cli , O) Class Clo is composed of an object of class Cli at offset O.
ObjectInObject(Clo , Cli , O) Either DerivedClass(Clo , Cli , O) or ComposedObject(Clo , Cli , O) is true, but not both.
HasNoBase(Cl) Class Cl is known not to inherit from any base classes.

ClassSize(Cl) This function returns the size in bytes of instantiated Cl objects.
VFTableSize(VFT) This function returns the size in bytes of vftable VFT.
Cla = Clb The sets of methods, Cla and Clb , both represent methods from the same class. This predicate

indicates the sets of methods should be combined into a single class.

Cla ≤ Clb The sets of methods, Cla and Clb , either both represent methods from the same class, or, the
methods in Clb are (possibly indirectly) inherited from Cla .

M ∈ Cl The method M is defined directly on class Cl. (It is a member of the set of methods defining the

class Cl.)
ClassCallsMethod(Cl, M) An instance of class Cl calls methodM, indicating M is on class Cl or one of its ancestors.

Table 2: A list of selected entity fact predicates that are produced by the forward reasoning and hypothetical reasoning capa-
bilities of OOAnalyzer.

natural identifier for the class such as a vftable address. Initially,

each method is considered its own singleton class, but is eventu-

ally merged with other classes using class merging facts such as

Cla = Clb , which indicates that two previously distinct classes are

really the same class. When Cla is merged with Clb , any existing

facts about Clb are updated to reference Cla instead. The Class-
CallsMethod fact provides evidence thatM is called on an object

of class Cl, which indicates thatM must be directly defined on Cl
or one of its ancestors. This in turn helps hypothetical reasoning

compute the candidate classes whichM could be assigned to. Be-

cause the fact is based on the data flow of object pointers rather

than vftables, it provides another example of how OOAnalyzer is

able to assign methods to non-polymorphic classes.

4.4 Reasoning Rules
As the primary mechanism for encoding the domain knowledge

about C++ programming and compilers, OOAnalyzer’s forward

reasoning component is one of the most important pieces of OOAn-

alyzer’s design. In this section, we present OOAnalyzer’s reasoning

rules as inference rules. Inference rules have the following form:

P1 P2 . . . Pn

C

where Pi represents the ith premise of the rule, and C represents

the conclusion. If all premises in the rule are present in the current

fact base, OOAnalyzer adds the conclusion to the fact base as well.

Fig. 2 shows a selection of rules which we also discuss below. Un-

fortunately, we are unable to reproduce all the reasoning rules in

this paper due to space limitations, but they can be found in the

OOAnalyzer source repository [18].

One salient feature of OOAnalyzer is that it can reason about

non-polymorphic classes, which do not have any associated vftable.

For example, Merge-6 shows the formal encoding of a rule which

OOAnalyzer uses to determine that a method called by a base class

and its derived class cannot be defined on the derived class. This is

one of many rules in OOAnalyzer that does not rely on vftables at

all, and instead is based on observing actions on object pointers.

Although OOAnalyzer does not depend on the information in

vftables, it can leverage their information to learn about polymor-

phic classes, similar to existing work. For example, Relate-3 shows

a rule that detects inheritance between classes by observing a con-

structor replace a vftable that another constructor installed in an

object. Relate-6 is a slightly more complicated encoding of the

observation that when a method is present in two vftables, the two

classes must be related in some way. Because of the ambiguous

nature of this observation, which does not identify the exact rela-

tionship (e.g., a sibling or parent-child relationship), the conclusion

is the negation of HasNoBase(Clb),
2
or that Clb inherits from an

2
An astute reader may recognize that Prolog does not allow rules to contain negation

in their conclusion. However, for most facts in OOAnalyzer, it is important to explicitly

represent whether that fact is definitely true, definitely false, or unknown in the

model. Thus, most facts in OOAnalyzer are actually represented by both a positive

and negative predicate for the fact (e.g., HasNoBase-True and HasNoBase-False). Such
predicates are kept consistent by OOAnalyzer’s consistency checking rules (Section 4.6)

and boilerplate code.

Merge-6

Constructor(Md) Md ∈ Cld
Constructor(Mb) Mb ∈ Clb

ClassCallsMethod(Cld , M)

ClassCallsMethod(Clb , M) Md , Mb
M ∈ Clm Cld , Clb DerivedClass(Cld , Clb , _)

Clm , Cld

Relate-3

Constructor(Md) VFTableInstall(_, Md , _, VFTd)
Constructor(Mb) VFTableInstall(_, Mb , 0, VFTb)

ThisCallMethod(Md , Pd)
ObjPtrOffset(Pd , O, Pb) ObjPtrInvoke(_, Md , Pb , Mb)

Md , Mb VFTd , VFTb Md ∈ Cld Mb ∈ Clb
DerivedClass(Cld , Clb , O)

Relate-6

VFTableEntry(VFTa , _, M) VFTableInstall(_, Ma , 0, VFTa)
VFTableEntry(VFTb , _, M) VFTableInstall(_, Mb , _, VFTb)
VFTa , VFTb Constructor(Ma) Constructor(Mb)

Ma ∈ Cla Mb ∈ Clb M ∈ Cla Cla , Clb
¬HasNoBase(Clb)

Merge-17

VFTableInstall(_, Md , 0, VFTd) Md ∈ Cld
VFTableInstall(_, Mb , 0, VFTb) Mb ∈ Clb

DerivedClass(Cld , Clb , _)
VFTableSize(VFTb) ≤ Size VFTableEntry(VFTd , O, M)

M ∈ Cl Cl , Cld O > Size

Cld = Cl

Figure 2: Selected forward reasoning rules

unspecified base class. Although this conclusion by itself is vague,

if there is no direct evidence that determines the inheritance rela-

tionship, it will eventually trigger hypothetical reasoning to find a

relationship that is consistent with all observed facts.

Another rule,Merge-17, demonstrates how bounding the size of

classes and vftables can help assign methods to classes [10]. When a

method appears in the vftable of a derived class, that method could

be defined in either the derived or base class.Merge-17 shows how

OOAnalyzer can decisively place the method on the derived class

by bounding the size of the base class’s vftable, and noting that the

method’s offset in the vftable is too large for the method to be on

the base class.

4.5 Hypothetical Reasoning Rules
Hypothetical reasoning rules are identical to forward reasoning

rules in structure, but are interpreted differently. First, hypothetical

rules are only used when forward reasoning rules are unable to

produce any new conclusions. Second, most hypothetical reason-

ing rules occur in pairs that share the same premises but contain

opposite conclusions. As with standard rules, if all of the premises

match the current fact base, the conclusion of the rule is added to

the fact base, and reasoning proceeds. If Prolog backtracks to this

Guess6-T

ClassCallsMethod(Cld , M) ¬ClassCallsMethod(Clb , M)

M ∈ Cl DerivedClass(Cld , Clb , _)

Cld = Cl

Guess1-T

ObjectInObject(Cld , Clb , O)

DerivedClass(Cld , Clb , O)

Guess4-T

Constructor(M) M ∈ Cl VFTableInstall(_, M, 0, VFTa)
¬∃VFTb . VFTableInstall(_, M, _, VFTb) ∧ VFTa , VFTb

HasNoBase(Cl)

Guess3-T

Method(M) ReturnsSelf(M)

NoCallsBefore(M) ¬PossibleVFTableEntry(_, _, M)

VFTableInstall(_, M, _, _) ¬UninitializedReads(M)

Constructor(M)

Figure 3: Selected hypothetical reasoning rules

point because of a contradiction, OOAnalyzer will revoke this fact

and instead assert the opposite conclusion. If this too results in a

contradiction, the inconsistency must have come from an earlier

hypothesis, and OOAnalyzer backtracks even further.

We ordered the hypothetical rules in OOAnalyzer so that the

most likely guesses are made first in order to minimize backtrack-

ing. Some of the highest priority hypothetical rules in OOAnalyzer

were originally forward reasoning rules (because we believed them

to be always true), but we later identified rare exceptions that were

difficult to characterize, and so we converted them to hypothetical

rules. We ordered other rules based on a combination of experi-

mentation and our beliefs about how prevalent the phenomena

are. For example, we prioritize rules related to single inheritance

before multiple inheritance, because in our experience multiple

inheritance is less common. A few guessing rules are also ordered

by design to consist of progressively more relaxed constraints. The

idea behind these rules is to choose entities that have the most

evidence associated with them first. This is especially important for

entities that consistency checks struggle to reject. Two examples

of this are discussed below in rules Guess4-T and Guess3-T.

One of the most important hypothetical reasoning rules, Guess6-

T, is shown in Fig. 3. This rule handles one of the most common

ambiguities in method assignment, which occurs when a method

is called on a derived class but not a base class. It is possible that

the method is defined on the base class but is never invoked there;

or, the method may be defined directly on the derived class. As

Guess6-T shows, OOAnalyzer initially guesses that the method is

on the derived class. If that results in a contradiction, Guess6-F

(not shown) instead guesses that the method is not on the derived

class.
3
Guess6-T is also another example of a rule that does not

depend on vftables, since ClassCallsMethod is based on data-flow

of object pointers.

3
Note that the method is not necessarily on the base class since it could be on one of

the base class’s ancestors.

Another common ambiguity when reasoning is whether a rela-

tionship between two classes represents an inheritance relationship

or a composition relationship (Section 2.2). As Guess1-T shows, in

the absence of other information, OOAnalyzer will initially guess

that an unspecified relationship is an inheritance relationship. If this

is proven untrue by consistency checking rules, then OOAnalyzer

will instead guess that there is a class composition relationship (i.e.,
a class object as a class member).

Rule Guess4-T illustrates the importance of the priority in which

hypothetical reasoning rules are applied. Guess4-T hypothetically

reasons that a class has no base class based on the very weak

precondition that the class’s constructor installs a single vftable.

While the HasNoBase fact is critically important for reasoning

about method to class assignment, the best evidence that a class

does not have a base class is often a lack of evidence for inheritance.

This rule exemplifies such reasoning, because any evidence that

inheritance might exist would immediately preclude this general

rule. This rule also exemplifies progressively more general guessing

rules. OOAnalyzer guesses that classes with one vftable installation

are candidates for HasNoBase (e.g., Guess4-T) before evaluating an
even weaker rule that guesses all remaining classes without proven

base classes actually have no base class at all (not shown). Since the

only forward reasoning rules for HasNoBase are based on RTTI

data structures, and we do not assume these are always available,

Guess4-T has an unexpectedly important role in OOAnalyzer for

such a weak rule.

Another important use of hypothetical reasoning is to detect

special methods such as constructors. For example, Guess3-T is

one of the highest priority rules used to guess that a method is

a constructor because it requires relatively strong heuristics. The

method must not be present in any vftables, may not read any

uninitialized memory, and must install a vftable in its object. We

have found these heuristics usually indicate that a method is a

constructor. A series of lower priority guessing rules then relaxes

these constraints.

4.6 Consistency Checking Rules
Consistency rules ensure that all facts in the fact base are internally

consistent with each other. Fig. 4 lists selected consistency rules.

For space reasons, we only list a few consistency rules, but the

complete set can be found in the OOAnalyzer source repository [18].

Most of the interesting consistency rules ensure a variety of C++-

specific invariants are true. For example, Consistency-VFTables

ensures that a VFTable cannot be assigned to two unrelated classes.

Another example is Consistency-MultipleRealDestructors,

which checks that each class has at most one real destructor. When

consistency checks fail, they conclude false, which forces Prolog to

backtrack and revisit guesses made during hypothetical reasoning.

OOAnalyzer completes and presents the results to the user after

all proposed guesses have been made and the model passes the

consistency checks.

5 IMPLEMENTATION
OOAnalyzer’s executable fact exporter is a tool built inside the

Pharos binary analysis framework [20]. Pharos is developed by

Carnegie Mellon’s Software Engineering Institute and builds upon

Consistency-VFTables

VFTableInstall(_, Ma , O, VFT)
VFTableInstall(_, Mb , O, VFT)

Ma , Mb Ma ∈ Cla Mb ∈ Clb Cla , Clb
HasNoBase(Cla) HasNoBase(Clb)

false

Consistency-VirtualConstructor

Constructor(M) VFTableEntry(VFT, _, M)

false

Consistency-DoubleDuty

Constructor(M) Destructor(M) ∨ DeletingDestructor(M)

false

Consistency-MultipleRealDestructors

Destructor(Ma) Destructor(Mb) Ma , Mb

false

Figure 4: Selected consistency rules

the binary analysis components of the ROSE compiler infrastruc-

ture [22] from Lawrence Livermore National Lab. At a high level,

ROSE handles Portable Executable (PE) file format parsing, instruc-

tion disassembly and the partitioning of those instructions into

functions. ROSE also provides instruction semantics and a static

analysis framework. Pharos builds on these capabilities by adding a

lightweight symbolic analysis that summarizes the output of each

function in terms of its symbolic inputs. OOAnalyzer utilizes this

symbolic analysis to generate initial facts. OOAnalyzer consists of

approximately 2,313 lines of C++ code inside the Pharos framework.

Pharos itself has 51,222 lines of C++. Most of OOAnalyzer’s C++

code implements the executable fact exporter, but there is also a

user front-end and an interface with the Prolog engine.

OOAnalyzer’s Prolog implementation consists of approximately

4,996 lines of Prolog rules. OOAnalyzer employs XSB Prolog [29]

because it is mature, open source, can be embedded into C/C++

programs, and has robust tabling support. From the perspective of a

Prolog programmer, tabling is essentially a mechanism for caching

the execution of Prolog rules. We quickly found that tabling sup-

port is a practical requirement due to the large number of facts

that can be emitted for programs, and the nature of OOAnalyzer’s

hypothetical reasoning strategy, which results in repetitive queries

being issued under slightly different contexts. Tabling allows these

repetitive queries to be made much more efficiently. The current

OOAnalyzer implementation can analyze 32-bit Windows PE exe-

cutables, and we are working to add support for 64-bit executables.

We chose to focus on Windows because it is the platform most com-

monly targeted by malware and other closed source C++ programs.

6 EVALUATION
In this section, we evaluate OOAnalyzer’s ability to identify C++

classes and their constituent methods (Section 6.4), and to classify

methods as constructors, destructors, and virtual methods (Sec-

tion 6.5). Along the way, we discuss how we produce ground truth

data (Section 6.2) for our program corpus (Section 6.1), and use that

ground truth data to develop a new class membership metric based

on edit distance (Section 6.3).

6.1 Program Corpus
We evaluated OOAnalyzer on a program corpus of 27 programs

that were compiled to 32-bit Windows PE executables. We chose

our corpus to reflect the two most common scenarios in which

recovering C++ abstractions is necessary: analyzing cleanware and

malware.

Cleanware. The top eighteen rows of Table 3 list the cleanware

programs in our corpus. We started by selecting Windows clean-

ware evaluated in other C++ abstraction recoverywork [14], namely:

CImg 1.05, Light POP SMTP 608b, optionparser 1.3, PicoHttpD 1.2,

and x3c 1.02. We used the same executables from that work [14],

which were compiled with Visual Studio 2010 using the Debug

configuration (i.e., optimizations disabled). For this paper, we added

log4cpp 1.1, muParser 2.2.3 and TinyXML 2.6.1, which we compiled

ourselves using Visual Studio 2010 in both Debug and Release con-

figurations to analyze the impact of optimizations.We felt that these

programs adequately covered small and medium sized programs

since they range in size from 42 to 663 KiB, but did not represent

larger cleanware programs. To represent more complex programs,

we included Firefox web browser 52.0,
4
and several programs from

MySQL database 5.2.0, including mysql.exe, which is larger than 5

MiB, and is a strenuous test of OOAnalyzer’s ability to handle large

and complex programs. We used the official precompiled 32-bit

Windows executables for these programs, which were compiled

by Visual Studio 12 and 15 respectively, both with optimizations

enabled.

Malware. The nine malware programs in our corpus are shown

in the bottom rows of Table 3. Malware is one of the most common

reverse engineering targets, but evaluating it is difficult because

ground truth is seldom available. We addressed this problem by

searching our private malware collection of hundreds of millions

of samples for executables that have corresponding Program Data-

base (PDB) symbol files [16]. Such pairs can be identified because

the Visual Studio linker embeds the debug GUID, which uniquely

identifies a PDB file, in the corresponding executable. We believe

that most of these debugging symbols were collected after a ma-

licious actor inadvertently copied them to a target system along

with the malware. To ensure that all of the malware files in our

corpus are actually malicious, we only considered files on which

at least one antivirus product in VirusTotal reported a detection,

and then manually verified that each file was malicious. From their

PDB files, we were able to determine that all the malware samples

were compiled with Visual Studio 9, 10, or 11, and only one sample

was compiled with optimizations enabled.

4
Firefox notably consists of an executable and several large DLLs such as xul.dll.
We only evaluated OOAnalyzer on firefox.exe. As we note in Section 7.3, this will

include in scope any C++ classes that firefox.exe imports from xul.dll, but will
not include classes internal to xul.dll. We believe this is what most people would

want when reverse engineering a program as complex as Firefox. The other programs

in our corpus do not contain significant amounts of code in DLLs.

6.2 Ground Truth
We produced ground truth C++ abstractions for each program by

parsing the PDB [16] files that are optionally produced by Visual

C++ during compilation. We only used these debugging symbols to

evaluate our results, and did not provide them to OOAnalyzer. The

ground truth for each program includes the list of classes in the

program, the methods and members in each class, and the location

of each class’s virtual function and base tables if applicable.

6.2.1 Scope. Our evaluation considers any method or object

whose implementation is in the executable to be in scope. In C++

programs, this often includes some library code, because the im-

plementations of methods from templated library classes will be

included in the executable even when employing dynamic linking.
Programs which utilize heavily templated libraries such as the Stan-

dard Template Library and Boost libraries [3] can have substantial

amounts of library code inside of them. Unfortunately, since these

library methods cannot be easily distinguished from application

code, their presence increases the difficulty of understanding the

given executable. Thus, it is important for tools such as OOAnalyzer,

which attempt to ease this burden, to consider them in scope.

6.2.2 Ground Truth Exceptions. Some differences between OO-

Analyzer’s output and the ground truth are minor differences that

are both uninteresting (i.e., an analyst does not care about the

distinction) and indistinguishable at the executable level (i.e., the
distinction only makes sense in source code). Thus, we adjust the

following special cases in the ground truth:

• When a class method does not use its object, it can be in-

distinguishable from a regular function. In particular, when

a function is called in a 32-bit binary, it can be ambiguous

whether the compiler placed the object pointer in the ecx
register explicitly to call a OO method using thiscall (Sec-

tion 2.3), or if the compiler happened to leave the object

pointer in ecx when it called a regular function. When the

OO method does not access ecx, it is ambiguous whether

ecx was actually a parameter. Because of this ambiguity, we

treat each method that does not use its object as a regular,

non-OO function.

• When a class method is linked into the executable but not

actually invoked in the control flow of the program, it is

often impossible to determine which class it belongs to. We

identify methods with no code or data references using a

Hex-Rays IDA Python script [12] and exclude those methods

from the ground truth. This scenario occurs more frequently

than might be expected because the linker includes entire

object modules without removing unused functions unless

Whole Program Optimization (Section 7.1) is enabled.

6.3 Edit Distance as a Class Membership Metric
In the next section, we evaluate OOAnalyzer’s ability to identify

C++ classes and the methods in each class.
5
But first we motivate

and introduce a new metric for quantifying the results. Recall from

Section 3.1.1 that OOAnalyzer represents each class as a set of

methods so that it can recover information about non-polymorphic

5
In this paper, we consider any object type with a method to be a class. This can

include classes, structs, and oddly enough, unions.

Method Edit Distance

w/o RTTI with RTTI w/o guessProgram Ver.

O
p
t
.

Com-

piler

Size

(KiB)

Num.

Class

Num.

Meth-

ods Move Add Rem Split Join Total % Total % Total %

CImg 1.0.5 VS10 590 29 220 3 15 1 1 1 21 9.5 21 9.5 200 90.9

Firefox 52.0 ✓ VS15 505 141 638 40 64 67 40 1 212 33.2 212 33.2 499 78.2

light-pop3-smtp 608b VS10 132 44 295 15 15 0 12 2 44 14.9 41 13.9 263 89.2

log4cpp Debug 1.1 VS10 264 139 893 100 59 2 66 12 239 26.8 240 26.9 786 88.0

log4cpp Release 1.1 ✓ VS10 97 76 378 27 15 2 24 7 75 19.8 75 19.8 244 64.6

muParser Debug 2.2.3 VS10 664 180 1437 213 111 17 104 38 483 33.6 474 33.0 1310 91.2

muParser Release 2.2.3 ✓ VS10 302 94 598 59 55 8 34 27 183 30.6 181 30.3 407 68.1

MySQL cfg_editor.exe 5.2.0 ✓ VS12 4,386 190 1266 200 63 3 68 57 391 30.9 388 30.6 1005 79.4

MySQL connection.dll 5.2.0 VS12 136 43 167 14 13 0 16 5 48 28.7 48 28.7 143 85.6

MySQL ha_example.dll 5.2.0 ✓ VS12 54 21 256 16 8 0 4 4 32 12.5 32 12.5 211 82.4

MySQL libmysql.dll 5.2.0 ✓ VS12 4,570 200 1328 197 65 3 75 66 406 30.6 399 30.0 1042 78.5

MySQL mysql.exe 5.2.0 ✓ VS12 4,678 202 1395 229 69 4 74 63 439 31.5 433 31.0 1110 79.6

MySQL upgrade.exe 5.2.0 ✓ VS12 5,321 333 2071 294 166 17 92 86 655 31.6 655 31.6 1578 76.2

optionparser 1.3 VS10 55 11 56 3 3 0 0 0 6 10.7 6 10.7 56 100.

PicoHttpD 1.2 VS10 386 95 656 54 58 10 24 20 166 25.3 161 24.5 569 86.7

TinyXML Debug 2.6.1 VS10 594 35 415 30 23 1 5 10 69 16.6 68 16.4 384 92.5

TinyXML Release 2.6.1 ✓ VS10 222 33 283 19 9 6 10 11 55 19.4 56 19.8 229 80.9

x3c 1.0.2 VS10 42 6 28 1 4 0 0 0 5 17.9 5 17.9 28 100.

Malware 0faaa3d3 — VS9 276 21 135 4 6 7 2 2 21 15.6 19 14.1 68 50.4

Malware 29be5a33 — VS9 571 19 130 4 9 1 0 1 15 11.5 15 11.5 110 84.6

Malware 6098cb7c — ✓ VS9 445 55 339 5 10 5 6 3 29 8.6 29 8.6 174 51.3

Malware 628053dc — VS10 1,322 207 1920 121 179 24 27 27 378 19.7 374 19.5 1724 89.8

Malware 67b9be3c — VS11 927 400 2072 280 159 89 111 31 670 32.3 670 32.3 1821 87.9

Malware cfa69fff — VS10 98 39 184 15 11 3 7 1 37 20.1 33 17.9 111 60.3

Malware d597bee8 — VS10 68 19 133 4 8 0 3 2 17 12.8 15 11.3 91 68.4

Malware deb6a7a1 — VS9 1,673 283 2712 264 281 38 19 37 639 23.6 639 23.6 2493 91.9

Malware f101c05e — VS9 1,256 169 1601 106 165 22 16 20 329 20.5 329 20.5 1453 90.8

Average 114 800 21.8 21.5 81.0

Table 3: The edit distance between the classes that OOAnalyzer recovered and the ground truth. A low edit distance indicates
that the class assignments are close to the ground truth. The edit distance is brokendown into thenumber ofmove, add, remove,
split and join edits to reveal the types of errors that OOAnalyzer made when it was not allowed to use RTTI. These sum to
the total edit distance which is also reported as a percentage of methods. The remaining columns show for comparison the
results when OOAnalyzer is allowed to utilize RTTI and when OOAnalyzer’s hypothetical reasoning component is disabled.

classes, which often do not have a natural identifier such as a virtual

function table.

Unfortunately, without class identifiers that are present in both

the ground truth and OOAnalyzer’s output, it can be difficult to

establish a mapping between the two. For example, if the ground

truth contains two classes that consist of the method sets {M1,M2}

and {M3,M4}, and OOAnalyzer reports a single class consisting of

{M1,M2,M3,M4}, how should that be judged? On the one hand,

all four methods in the executable were identified, but on the other

hand, OOAnalyzer accidentally merged two classes into one.

We propose that class membership should be evaluated by mea-

suring the edit distance that is required to transform the classes

that OOAnalyzer emits into the classes found in the ground truth.

The edit distance is the number of actions used to perform the

transformation, where the possible actions are:

(1) moving a single method to another class;

(2) adding a single method that OOAnalyzer failed to identify

to an arbitrary class;

(3) removing an extra function that OOAnalyzer mistakenly

identified as a method;

(4) arbitrarily splitting a class into two new classes; and

(5) merging two separate classes into one.

For instance, in the above example, the class recovered by OO-

Analyzer, {M1,M2,M3,M4}, must be split to yield {M1,M2} and

{M3,M4}, which yields an edit distance of one.

Edit distance can be interpreted as an upper bound on the number

of mistakes that OOAnalyzer made. For example, if OOAnalyzer

achieved an edit distance of 6 in a program with 56 methods (10.7%),

it must have recovered at least 56−6 = 50methods (89.3%) correctly,

since every incorrect method will require at least one corresponding

edit to correct it.

Ideally, we would like to use theminimal edit distance as a metric.

However, because of the large number of classes and methods in

real-world C++ programs, we have found this to be impractical.

Instead, we use a greedy algorithm to compute a sequence of edits

that transforms the OOAnalyzer output to the ground truth.

Constructor Destructor VF Tables Virtual Methods

Program

Recall Prec F Recall Prec F Recall Prec F Recall Prec F

CImg 44/51 44/53 0.85 0/22 0/0 0.00 13/13 13/13 1.00 23/30 23/24 0.85

Firefox 40/51 40/54 0.76 1/39 1/1 0.05 18/33 18/18 0.71 85/101 85/98 0.85

light-pop3-smtp 41/52 41/44 0.85 2/27 2/2 0.14 5/5 5/5 1.00 6/7 6/6 0.92

log4cpp Debug 192/209 192/197 0.95 40/118 40/40 0.51 18/18 18/18 1.00 84/101 84/86 0.90

log4cpp Release 135/165 135/170 0.81 24/73 24/36 0.44 18/21 18/18 0.92 84/101 84/86 0.90

muParser Debug 293/325 293/314 0.92 28/156 28/30 0.30 12/12 12/13 0.96 35/47 35/43 0.78

muParser Release 197/252 197/269 0.76 15/91 15/21 0.27 12/14 12/13 0.89 35/47 35/37 0.83

MySQL cfg_editor.exe 260/290 260/311 0.87 107/281 107/111 0.55 69/69 69/69 1.00 321/427 321/325 0.85

MySQL connection.dll 10/10 10/25 0.57 8/36 8/9 0.36 10/13 10/10 0.87 22/39 22/22 0.72

MySQL ha_example.dll 15/19 15/21 0.75 4/19 4/6 0.32 9/9 9/9 1.00 162/170 162/162 0.98

MySQL libmysql.dll 283/310 283/340 0.87 115/297 115/119 0.55 75/75 75/75 1.00 348/453 348/352 0.86

MySQL mysql.exe 282/314 282/341 0.86 115/300 115/121 0.55 75/75 75/75 1.00 341/453 341/345 0.85

MySQL upgrade.exe 459/529 459/570 0.84 198/467 198/221 0.58 150/152 150/150 0.99 484/674 484/490 0.83

optionparser 10/11 10/10 0.95 0/1 0/0 0.00 6/6 6/6 1.00 8/8 8/8 1.00

PicoHttpD 117/142 117/126 0.87 68/109 68/72 0.75 46/46 46/46 1.00 119/159 119/119 0.86

TinyXML Debug 53/60 53/57 0.91 0/39 0/3 0.00 24/24 24/24 1.00 101/119 101/102 0.91

TinyXML Release 49/60 49/53 0.87 27/39 27/36 0.72 24/24 24/24 1.00 101/119 101/103 0.91

x3c 6/7 6/6 0.92 0/5 0/0 0.00 1/1 1/1 1.00 1/1 1/1 1.00

Malware 0faaa3d3 12/12 12/13 0.96 6/12 6/6 0.67 4/4 4/4 1.00 16/19 16/17 0.89

Malware 29be5a33 33/34 33/36 0.94 0/15 0/0 0.00 13/13 13/13 1.00 23/30 23/24 0.85

Malware 6098cb7c 50/52 50/51 0.97 8/15 8/9 0.67 43/43 43/43 1.00 103/106 103/103 0.99

Malware 628053dc 187/228 187/194 0.89 111/171 111/128 0.74 100/100 100/107 0.97 645/663 645/648 0.98

Malware 67b9be3c 464/532 464/490 0.91 169/342 169/188 0.64 123/123 123/123 1.00 139/249 139/217 0.60

Malware cfa69fff 27/29 27/30 0.92 6/24 6/6 0.40 5/5 5/5 1.00 16/20 16/16 0.89

Malware d597bee8 19/20 19/19 0.97 4/11 4/4 0.53 4/4 4/4 1.00 9/12 9/9 0.86

Malware deb6a7a1 262/320 262/275 0.88 159/262 159/182 0.72 130/130 130/137 0.97 842/889 842/871 0.96

Malware f101c05e 163/197 163/169 0.89 105/153 105/122 0.76 93/93 93/100 0.96 472/487 472/475 0.98

Average 0.88 0.88 0.87 0.32 0.88 0.41 0.96 0.99 0.97 0.82 0.96 0.88

Table 4: The recall and precision of various method properties achieved by OOAnalyzer, without utilizing RTTI data. A recall
of X/Y indicates that OOAnalyzer detected X instances out of Y total in the ground truth. A precision of X/Y indicates that
X of the Y instances that OOAnalyzer reported were actually correct. Green indicates a recall or precision higher than 0.75,
whereas red is a value lower than 0.25.

6.4 Class Membership Results
Table 3 shows the edit distance results under three different ex-

periments. For each experiment, we report the number of edits

between OOAnalyzer’s results and the ground truth, which we

call the absolute edit distance. Since a program with more methods

naturally provides more opportunities for mistakes, we also report

the edit distance as a percentage of the number of C++ methods in

the program, which we call the relative edit distance.

Without RTTI. In the first experiment, OOAnalyzer does not

use RTTI data (Section 2.4) even if it is available, which may be

appropriate when analyzing malicious or untrusted code. Even in

this conservative experiment, OOAnalyzer achieves an average

relative edit distance of 21.8%, which indicates that OOAnalyzer

is recovering the vast majority of classes correctly. OOAnalyzer is

able to recover C++ abstractions equally well for cleanware and

malware, with the average relative edit distances being 23.6% and

18.3% respectively. In addition to the edit distances, Table 3 also

displays the types of edits encountered in this experiment, which

provides some insight into the types of mistakes that OOAnalyzer

made. The most common edits are moves (40.9%) and adds (29%),

which indicate assigning a method to the wrong class, and failing to

detect a method. The large number of adds is in part due to an effort

to reduce removals (5.8%). The higher number of splits (14.8%) than

joins (9.4%) shows that OOAnalyzer is slightly more inclined to

merge classes incorrectly than to fail to do so. This is likely caused

by shared method implementations which is discussed more in

Section 7.1.

Using RTTI. The second experiment evaluates OOAnalyzer’s

performance when it leverages RTTI data (Section 2.4). Since RTTI

provides useful information about the polymorphic methods and

classes in the class hierarchy, it is expected that OOAnalyzer would

perform better when given access to this information. However, the

results of this experiment show that OOAnalyzer only performs

marginally better with access to RTTI, with the maximum and

average improvements in absolute edit distance being 9 and 1.7. We

found these results to be consistent with our intuition that most

of OOAnalyzer’s edits are related to non-polymorphic classes and

methods; polymorphic methods are generally easier to recover.

Without hypothetical reasoning. The final experiment is the same

as the Without RTTI experiment, except that OOAnalyzer’s hy-

pothetical reasoning component is disabled. By comparing this

experiment to the first experiment, which uses OOAnalyzer’s hy-

pothetical reasoning component, we can measure the contribution

of hypothetical reasoning. Without hypothetical reasoning, OOAn-

alyzer performs significantly worse, yielding 81% as the average

relative edit distance (compared to 21.8% with hypothetical rea-

soning). These results highlight the importance of hypothetical

reasoning, and reinforce the challenge of coping with uncertainty

while recovering C++ abstractions.

6.5 Method Properties
Table 4 shows howwell OOAnalyzer identifies special method prop-

erties in the absence of RTTI. Specifically, OOAnalyzer attempts

to identify constructors, destructors, virtual methods, and virtual

function tables. Each group of columns in the table reports the

recall, precision and F-score (i.e., the harmonic mean of precision

and recall) for one of these properties. For example, on construc-

tors, CImg has a recall of 44/51, which indicates that OOAnalyzer

detected 44 of the 51 constructors in CImg, and a precision of 44/53,

which indicates that OOAnalyzer reported 53 constructors total, of

which 44 were correct. As expected, this results in a relatively high

F score of 0.85.

With a few exceptions, OOAnalyzer is able to identify construc-

tors with very high accuracy (average F score of 0.87). Unfortu-

nately, destructor detection has proven more difficult, and OOAna-

lyzer only achieves an average F score of 0.41. We have found that

destructors are often trivial implementations that are optimized

away, which makes them more difficult to distinguish. Finally, like

many other tools in this area, OOAnalyzer is able to identify vir-

tual function tables with high accuracy (average F score of 0.97).

As a result, OOAnalyzer can effectively distinguish most virtual

methods as well (average F score of 0.88). Unlike most other tools,

however, OOAnalyzer also reasons about non-virtual methods and

non-polymorphic classes.

6.6 Performance
All experiments were performed using a single core of an Intel

Xeon E5-2695 2.4Ghz CPU with 256 GiB of memory. Table 5 lists

OOAnalyzer’s running time and memory usage (in minutes and

mebibytes, respectively) for each benchmark. OOAnalyzer’s total

running time ranges from 30 seconds to 22.7 hours, with a median

and mean of 0.2 and 2.3 hours. OOAnalyzer’s maximum memory

usage ranges from 43.1 MiB to 3.5 GiB, with a median and mean

of 0.7 and 1.0 GiB, respectively. Larger executables clearly tend

to require more time and memory, as expected. On most larger

executables, Prolog reasoning dominates the runtime of the system,

whereas for smaller executables, fact exporting takes the bulk of

the time.

7 DISCUSSION AND LIMITATIONS
7.1 Optimizations
Some compiler optimizations can modify executable code in ways

that stops OOAnalyzer’s rules from working as intended. One of

the most problematic classes of optimization is Whole Program

Optimization (WPO) [17] (enabled by the GL switch in Microsoft

Visual C++), which allows the compiler to perform optimizations

across multiple compilation modules at link time. Unfortunately,

this switch allows the compiler to violate ABI conventions in func-

tions that are not exported. For example, the compiler may decide

to pass object pointers to methods in a register other than ecx,
even if that method was declared to use the thiscall convention

(Section 2.3). These optimizations make it more difficult to identify

and track the data flow of object pointers.

Another problematic optimization is when the linker reuses iden-

tical function implementations. If the linker detects two symbols

that consist of exactly the same executable code, it may only store

one copy of the code and point both symbols at the same address.

This is problematic for one of the fundamental assumptions in OO-

Analyzer, which is that each method in the executable may only

belong to one class. This optimization can cause OOAnalyzer to

mistakenly conclude that two separate classes need to be merged.

For instance, if the methodsMa andMb have identical implemen-

tations it’s possible that they will both be assigned to the same

address. If Ma is on class Cla and Mb is on class Clb , then OOAna-

lyzer would likely make the errant conclusion that Cla and Clb are

actually the same class because it has no way of knowing that Ma
and Mb are distinct at the source code level. Such challenges cause

difficulty for human reverse engineers as well, and demonstrate the

complexity of the problem.

In some situations, optimizing compilers will inline a function
by replacing a call to that function with a copy of the function’s

body. Unfortunately, inlining makes recovering C++ abstractions

more difficult, since any behavior attributed to a particular function

could actually be caused by an inlined function call. One of the

most common cases is when constructors inline other constructors

(or destructors inline destructors), which happens frequently be-

cause of inheritance and composition. When a constructor calls

another constructor without inlining, it is easy to detect and usu-

ally indicates that the two constructors are on related classes. In

the presence of inlining, it may not even be clear that there are

two constructors involved. Many of OOAnalyzer’s rules have been

adjusted to account for common inlining situations. For example,

when a constructor calls the constructor of an inherited class and

the call is inlined, it is still possible to detect the inheritance rela-

tionship because the inlined code will include vftable (or vbtable)

installations for both constructors. Such rules are among the most

complex in OOAnalyzer, however, and it is impossible to handle all

inlined situations perfectly.

7.2 Other platforms
OOAnalyzer is designed to analyze Windows executables produced

using the Visual C++ ABI [11]. Onmany other platforms (e.g., Linux

and Unix), C++ compilers target the Itanium C++ ABI instead [13].

Adding support to OOAnalyzer for the Itanium C++ ABI would

primarily consist of adjusting the executable fact exporter to be

able to detect the different conventions used for operations such

as method calls and installing virtual function and base tables. We

expect that few changes would be needed to most of the regular

reasoning rules, because they reason at a semantic level that should

be preserved across ABIs. However, the current hypothetical rea-

soning rules can be thought of as heuristics that are tuned for code

Fact Exporting Reasoning Both

Program Ver. Opt.

Com-

piler

Size

(KiB)

Time

(min)

Mem.

(MiB)

Time

(min)

Mem.

(MiB)

Time

(min)

CImg 1.0.5 VS10 590 20.3 1,696.9 0.9 30.4 21.2

Firefox 52.0 ✓ VS15 505 4.5 354.9 1.2 60.8 5.7

light-pop3-smtp 608b VS10 132 2.5 326.4 0.2 24.0 2.7

log4cpp Debug 1.1 VS10 264 5.7 757.8 5.1 133.9 10.8

log4cpp Release 1.1 ✓ VS10 97 1.7 136.8 0.9 83.2 2.6

muParser Debug 2.2.3 VS10 664 9.2 1,932.1 25.5 245.0 34.7

muParser Release 2.2.3 ✓ VS10 302 4.6 422.8 21.1 210.1 25.7

MySQL cfg_editor.exe 5.2.0 ✓ VS12 4,386 13.0 839.3 66.5 870.5 79.6

MySQL connection.dll 5.2.0 VS12 136 1.5 168.6 0.1 11.0 1.6

MySQL ha_example.dll 5.2.0 ✓ VS12 54 0.3 43.1 0.7 26.9 1.1

MySQL libmysql.dll 5.2.0 ✓ VS12 4,570 17.1 1,075.8 81.0 964.6 98.1

MySQL mysql.exe 5.2.0 ✓ VS12 4,678 18.9 1,210.1 85.9 1,052.2 104.8

MySQL upgrade.exe 5.2.0 ✓ VS12 5,321 20.1 1,363.9 630.2 2,994.0 650.2

optionparser 1.3 VS10 55 1.6 166.1 0.1 8.2 1.7

PicoHttpD 1.2 VS10 386 6.4 736.3 3.0 108.4 9.5

TinyXML Debug 2.6.1 VS10 594 10.3 1,675.5 1.9 60.2 12.1

TinyXML Release 2.6.1 ✓ VS10 222 7.5 808.4 0.8 41.7 8.2

x3c 1.0.2 VS10 42 0.5 64.6 0.0 4.7 0.5

Malware 0faaa3d3 VS9 276 1.4 198.0 0.0 9.6 1.4

Malware 29be5a33 VS9 571 8.7 1,210.8 0.4 18.1 9.1

Malware 6098cb7c ✓ VS9 445 15.1 499.1 4.5 34.9 19.6

Malware 628053dc VS10 1,322 57.4 3,063.6 550.0 1,428.8 607.3

Malware 67b9be3c VS11 927 12.1 1,570.6 145.9 1,234.7 158.0

Malware cfa69fff VS10 98 1.8 167.1 0.1 13.5 1.8

Malware d597bee8 VS10 68 1.0 140.1 0.1 9.1 1.1

Malware deb6a7a1 VS9 1,673 73.5 3,558.8 1,287.3 3,377.4 1,360.8

Malware f101c05e VS9 1,256 61.3 2,785.0 484.2 1,140.8 545.5

Average 14.0 999.0 125.8 525.8 139.8

Table 5: The runtime (in minutes) and memory usage (in mebibytes) that OOAnalyzer consumed on each benchmark. Fact
Exporting represents the runtime and memory used by the fact exporter, whereas Reasoning represents the resources used by
the Prolog reasoning components.

produced by the Visual C++ compiler, and might need to be tai-

lored for other compilers and ABIs. We expect this to mostly be

a straightforward engineering effort, although there is also an in-

teresting research question in whether these types of rules can be

automatically inferred or tuned.

7.3 External classes
Dynamic linking can pose a challenge for C++ abstraction recovery

because class definitions can span multiple executable files. A com-

mon example of this is when the implementation of a base class

is loaded from a dynamically linked library (DLL), while the exe-

cutable itself contains the implementation of the derived class. This

pattern is common in Microsoft Foundation Class (MFC) programs.

MFC provides a variety of base classes (implemented in the MFC

library) that developers customize by creating a class (implemented

in their executable) that inherits from the MFC class. In such pro-

grams, obtaining a complete understanding of the program’s class

relationships requires knowledge from both the executable and the

DLL. One approach to this problem is to load the executable in

conjunction with all of the required dynamic libraries for analysis.

In addition to presenting scalability challenges, this approach can

create confusion about whether the recovered C++ abstractions

are only valid for the specific versions of the DLLs that were ana-

lyzed. This approach is also problematic for malware analysis, since

executables are routinely collected without all required libraries.

Instead of loading all executables and DLLs at the same time,

OOAnalyzer attempts to form a minimal understanding of external

classes by parsing the relocation symbols used for dynamic linking.

C++ compilers encode all the information that is needed to be able

to call a method from another executable module using an encoding

called mangling. The mangled name of a method encodes the class

that the method belongs to, and attributes such as whether the

method is virtual or a constructor. Unlike debug symbols, these

relocation symbols are necessary to run the program, and cannot

be stripped without breaking the program. To leverage this infor-

mation, we built a custom demangler that extracts properties for

names that are mangled according to the Visual Studio name man-

gling scheme.
6
This allows OOAnalyzer to reason about these class

6
The Visual Studio name mangling scheme does not have a canonical source, but

researchers have reverse engineered most of it [32].

methods without analyzing their code (which may not be avail-

able). Although our ground truth (Section 6.2) does not directly

evaluate OOAnalyzer’s understanding of external classes, we have

found that this information is necessary to inform OOAnalyzer’s

understanding of internal classes that are related to external classes,
which is counted.

8 RELATEDWORK
8.1 Recovery of C++ Abstractions
The research most similar to ours recovers a broad set of C++ ab-

stractions including grouping methods into classes, detecting re-

lationships among classes, and detecting special methods such as

constructors and destructors. Compared to these works, OOAna-

lyzer is relatively unique in that it statically recovers information

about all classes (including non-polymorphic classes). Only two

other works [14, 28] attempt to recover information about non-

polymorphic classes, and only one does so statically, which we

discuss first.

ObjDigger [14] is the predecessor of OOAnalyzer, and its de-

velopment significantly informed the overall design and approach

of OOAnalyzer. ObjDigger attempts to recover many of the same

C++ abstractions as OOAnalyzer, and more importantly, is the only

other system we know of that is able to statically recover non-

polymorphic classes. Like OOAnalyzer, ObjDigger does not rely

on RTTI data, and instead leverages vftable analysis and object

pointer tracking. The most significant difference between ObjDig-

ger and OOAnalyzer (and the primary inspiration for developing

OOAnalyzer) is that ObjDigger reasons using procedurally written

code. We found that as we tried to evolve ObjDigger to improve

its accuracy, eventually it became too complicated to understand

how it analyzes very complex scenarios. In OOAnalyzer, we over-

came this largely by introducing hypothetical reasoning, which

allows OOAnalyzer to reason through complex scenarios using

simple rules. We showed in Section 6.4 that OOAnalyzer performed

significantly worse when hypothetical reasoning was disabled.

Our evaluation includes the same five executables that ObjDigger

was evaluated on (CImg, light-pop3-smtp, optionparser, PicoHttpD,

and x3c) but in our prior work we evaluated them using a different

metric. Specifically, we scored each program using the percentage

of methods that were associated with the “correct class”. As we

note in Section 6.3, without a clear identifier such as a vftable, this

metric is subjective and ill-defined whenever the recovered classes

do not bear a clear resemblance to the ground truth. We believe

edit distances are a much better metric.

We ran ObjDigger’s results through our new edit distance based

evaluation system to provide a fair comparison, and the results can

be seen in Table 6. OOAnalyzer recovers classes more accurately

for all programs, including the five programs that ObjDigger was

originally tested on, which are shown in the first five rows. On

these five programs, OOAnalyzer achieved an average relative edit

distance of 15.7%, compared to 44.6% for ObjDigger. ObjDigger

performed very poorly on the programs we did not evaluate in

the ObjDigger paper [14]; it only achieved an edit distance of less

than 50% on one program. It also failed to produce a result on four

of the MySQL programs, either because it crashed or took longer

than 24 hours. The majority of ObjDigger’s edits are Adds, which

indicates that ObjDigger did not detect the method, or was unable

to determine which class it is associated with. Finally, although

ObjDigger can also identify constructors, in our past work we did

not measure its effectiveness at that or on any of the properties in

Table 4.

Lego [28] is another system that can recover non-polymorphic

classes from C++ executables. Unlike OOAnalyzer (and ObjDigger),

Lego recovers this information by processing dynamic runtime

traces, which allows it to recover class hierarchies from OO lan-

guages other than C++. In addition to recovering classes, Lego can

also recover inheritance and composition relationships between

classes, and identify destructor methods. Lego’s primary disadvan-

tage is that, as a dynamic analysis, it relies on having test inputs

that trigger the usage of classes and methods. Unfortunately, this

makes Lego less applicable when such inputs are unavailable. It also

makes it difficult to perform an apples-to-apples comparison with

OOAnalyzer, because Lego’s performance depends on the quality

of the testcases it uses.

SmartDec [9, 10] is a C/C++ decompiler for executables. Smart-

Dec naturally recovers C++ abstractions, but also has functionality

needed for decompilation such as control flow structuring and ex-

ception handler analysis, which OOAnalyzer does not. Similar to

OOAnalyzer, SmartDec tracks object pointers, performs vftable

analysis, and does not rely on RTTI. SmartDec, however, only at-

tempts to recover the methods of polymorphic classes (i.e., classes
with virtual functions).

Yoo and Barua [33] describe a system using SecondWrite [2]

to statically recover a wide variety of C++ abstractions, including

exception handlers. Their system relies on RTTI data, and thus only

recovers information about polymorphic classes. Their approach

may also be infeasible when analyzing malware, which sometimes

has RTTI data disabled to impede analysis.

Katz [15] uses a combination of program analysis and machine

learning to map virtual calls to their targets. They train a classifier

to estimate each method’s likelihood of being dispatched based on

learned statistical models of object usage events, including reads,

writes, and calls. These object usage events are generated using a

lightweight static symbolic analysis similar to OOAnalyzer’s (Sec-

tion 4.1). Whereas OOAnalyzer uses hand-written rules that encode

C++ domain knowledge, Katz uses models that are automatically

trained for each program. Future research could explore using ma-

chine learning to automatically generate C++ reasoning rules for

OOAnalyzer.

8.2 Security Protections for C++ Binaries
Early control-flow integrity (CFI) protection systems [1] inferred al-

lowed control-flow transitions from source code. Later, researchers

developed CFI systems using binary analysis and rewriting tech-

niques that could be applied directly to executables without re-

quiring access to source code [31, 35]. Such systems did not take

into account any knowledge of C++ implementation mechanisms,

and enforced relatively coarse-grained policies for C++ executa-

bles [21, 24]. While some researchers have proposed techniques

that improve precision in language-agnostic ways [30], those fo-

cusing on recovering C++ abstractions [8, 19, 21, 34, 35] are more

comparable to OOAnalyzer.

ObjDigger OOAnalyzer

Program In [14] Opt.

Com-

piler

Size

(KiB)

Num.

Classes

Num.

Methods Move Add Rem Split Join Edits % Edits %

CImg ✓ VS10 590 29 220 15 101 4 0 1 121 55.0 21 9.5

light-pop3-smtp ✓ VS10 132 44 295 8 113 0 11 2 134 45.4 44 14.9

optionparser ✓ VS10 55 11 56 1 22 0 0 0 23 41.1 6 10.7

PicoHttpD ✓ VS10 386 95 656 37 316 24 15 1 393 59.9 166 25.3

x3c ✓ VS10 42 6 28 0 5 1 0 0 6 21.4 5 17.9

Firefox ✓ VS15 505 141 638 2 459 41 5 0 507 79.5 212 33.2

log4cpp Debug VS10 264 139 893 6 806 16 1 0 829 92.8 239 26.8

log4cpp Release ✓ VS10 97 76 378 2 258 12 0 0 272 72.0 75 19.8

muParser Debug VS10 664 180 1437 21 1334 4 2 0 1361 94.7 483 33.6

muParser Release ✓ VS10 302 94 598 8 352 2 7 0 369 61.7 183 30.6

MySQL cfg_editor.exe ✓ VS12 4,386 190 1266 — — — — — — — 391 30.9

MySQL connection.dll VS12 136 43 167 0 121 1 7 0 129 77.2 48 28.7

MySQL ha_example.dll ✓ VS12 54 21 256 5 230 0 2 0 237 92.6 32 12.5

MySQL libmysql.dll ✓ VS12 4,570 200 1328 — — — — — — — 406 30.6

MySQL mysql.exe ✓ VS12 4,678 202 1395 — — — — — — — 439 31.5

MySQL upgrade.exe ✓ VS12 5,321 333 2071 — — — — — — — 655 31.6

TinyXML Debug VS10 594 35 415 17 240 3 5 3 268 64.6 69 16.6

TinyXML Release ✓ VS10 222 33 283 11 151 5 7 0 174 61.5 55 19.4

Malware 0faaa3d3 VS9 276 21 135 1 118 1 1 0 121 89.6 21 15.6

Malware 29be5a33 VS9 571 19 130 12 78 1 0 0 91 70.0 15 11.5

Malware 6098cb7c ✓ VS9 445 55 339 0 129 0 2 0 131 38.6 29 8.6

Malware 628053dc VS10 1,322 207 1920 14 1214 7 9 1 1245 64.8 378 19.7

Malware 67b9be3c VS11 927 400 2072 78 1091 29 89 12 1299 62.7 670 32.3

Malware cfa69fff VS10 98 39 184 3 117 1 3 1 125 67.9 37 20.1

Malware d597bee8 VS10 68 19 133 2 62 0 2 2 68 51.1 17 12.8

Malware deb6a7a1 VS9 1,673 283 2712 20 1861 7 11 1 1900 70.1 639 23.6

Malware f101c05e VS9 1,256 169 1601 12 961 5 8 1 987 61.6 329 20.5

Average 114 800 65.0 21.8

Table 6: The edit distance between the classes that ObjDigger recovered and the ground truth. The first five programs in the
table are those evaluated in the original ObjDigger publication [14]. A low edit distance indicates that the class assignments
are close to the ground truth. The edit distance for ObjDigger is broken down into the number of move, add, remove, split and
join edits to reveal the types of errors that ObjDigger made. These sum to the total edit distance which is also reported as a
percentage ofmethods. For comparison, OOAnalyzer’s total edit distances are reported as well. The green background shading
indicates the best result.

vfGuard [21] and VTint [34] are examples of CFI systems that

incorporate C++ specific protections. Both systems identify and

recover information about virtual call sites and vftables. vfGuard

attempts to sanitize virtual calls based on this information, whereas

VTint relocates identified vftables to a read-only segment of mem-

ory, and checks before each virtual call that the referenced vftable

is in read-only memory. More recently, other C++-specific CFI

systems such as MARX [19] and VCI [8] have begun recovering

additional information such as inheritance hierarchies. The inheri-

tance hierarchy information strengthens enforcement policies by

disallowing virtual calls to unrelated classes. Although MARX and

VCI attempt to recover the inheritance hierarchy, they make no

attempt to determine the direction of inheritance relationships as

OOAnalyzer does, which could further strengthen the inferred CFI

policies.

All four of these systems only recover C++ abstractions that are

required to protect virtual calls, thereby only recovering informa-

tion about polymorphic classes. In contrast, OOAnalyzer attempts

to recover all methods on all classes that are implemented in the

target binary, including non-polymorphic methods and classes.

8.3 Detection of C++ Vulnerabilities
The RECALL system [6, 7] recovers vftables, constructors and de-

structors in addition to tracking the dataflow of object pointers.

It uses this information to detect vftable escape vulnerabilities by
observing if the offset into a vftable is too large for the intended

type of the object. OOAnalyzer uses similar logic in its forward

reasoning rules (Section 3.2.2) to group methods into classes and

recover relationships among classes.

9 CONCLUSIONS
We showed that recovering detailed C++ abstractions is possible

through the creation of OOAnalyzer. OOAnalyzer uses a light-

weight symbolic analysis to efficiently generate an initial set of

facts, and analyzes them using a Prolog-based reasoning system.

We evaluated OOAnalyzer and showed that it is both scalable

and accurate. It recovered abstractions on programs as complex

as Firefox and MySQL, and from C++-based malware executables.

It identifies the classes in an executable and the methods of those

classes with high accuracy (average 21.8% error rate), and can dis-

tinguish special methods such as constructors, destructors, virtual

function tables, and virtual methods (average F-scores of 0.87, 0.41,

0.97, and 0.88).

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow

Integrity. In Proceedings of the ACM Conference on Computer and Communications
Security.

[2] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen,

Nathan Giles, and Rajeev Barua. 2013. A Compiler-level Intermediate Represen-

tation Based Binary Analysis and Rewriting System. In Proceedings of the ACM
European Conference on Computer Systems.

[3] Boost. 1998. Boost C++ Libraries. (1998). Retrieved 14 Aug. 2018 from http:

//www.boost.org

[4] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.

Unleashing Mayhem on Binary Code. In Proceedings of the IEEE Symposium on
Security and Privacy.

[5] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A

Platform for In-Vivo Multi-Path Analysis of Software Systems. In Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems.

[6] David Dewey and Jonathon Giffin. 2012. Static Detection of C++ Vtable Escape

Vulnerabilities in Binary Code. In Proceedings of the Network and Distributed
System Security Symposium.

[7] David Dewey, Bradley Reaves, and Patrick Traynor. 2015. Uncovering Use-After-

Free Conditions in Compiled Code. In Proceedings of the IEEE Conference on
Availability, Reliability and Security.

[8] Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou. 2017. Strict Virtual Call

Integrity Checking for C++ Binaries. In Proceedings of the ACM Asia Conference
on Computer and Communications Security.

[9] Alexander Fokin, Egor Derevenetc, Alexander Chernov, and Katerina Troshina.

2011. SmartDec: Approaching C++ Decompilation. In Proceedings of the Working
Conference on Reverse Engineering (WCRE).

[10] Alexander Fokin, Katerina Troshina, and Alexander Chernov. 2010. Reconstruc-

tion of Class Hierarchies for Decompilation of C++ Programs. In Proceedings of
the Software Maintenance and Reengineering Conference.

[11] Jan Gray. 1994. C++: Under the Hood. Technical Report. Microsoft. Retrieved

August 14, 2018 from http://www.openrce.org/articles/files/jangrayhood.pdf

[12] Hex-Rays. 2017. Hex-Rays IDA Disassembler. (2017). Retrieved 14 Aug. 2018

from https://www.hex-rays.com/products/ida/

[13] Itanium 2017. Itanium C++ ABI. (March 2017). Retrieved 14 Aug. 2018 from

https://itanium-cxx-abi.github.io/cxx-abi/

[14] Wesley Jin, Cory Cohen, Jeffrey Gennari, Charles Hines, Sagar Chaki, Arie

Gurfinkel, Jeffrey Havrilla, and Priya Narasimhan. 2014. Recovering C++ Objects

From Binaries Using Inter-procedural Data-Flow Analysis. In Proceedings of the
Program Protection and Reverse Engineering Workshop.

[15] Omer Katz, Ran El-Yaniv, and Eran Yahav. 2016. Estimating Types in Binaries

Using Predictive Modeling. In Proceedings of the Symposium on Principles of
Programming Languages.

[16] Microsoft. 2015. Information from Microsoft about the PDB format. (29 Oct.

2015). Retrieved 14 Aug. 2018 from https://github.com/Microsoft/microsoft-pdb

[17] Microsoft. 2016. /GL (Whole Program Optimization). (Nov. 2016). Re-

trieved 14 Aug. 2018 from https://docs.microsoft.com/en-us/cpp/build/reference/

gl-whole-program-optimization

[18] OOAnalyzer 2018. OOAnalyzer prolog rules. (10 May 2018). Retrieved 14 Aug.

2018 from https://github.com/cmu-sei/pharos/tree/master/share/prolog/oorules

[19] Andre Pawlowski, Moritz Contag, Victor van der Veen, Chris Ouwehand,

Thorsten Holz, Herbert Bos, Elias Athanasopoulos, and Cristiano Giuffrida. 2017.

MARX: Uncovering Class Hierarchies in C++ Programs. In Proceedings of the
Network and Distributed System Security Symposium.

[20] Pharos 2017. Pharos project page. (2017). Retrieved 14 Aug. 2018 from https:

//github.com/cmu-sei/pharos

[21] Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard: Strict Protection

for Virtual Function Calls in COTS C++ Binaries. In Proceedings of the Network
and Distributed System Security Symposium.

[22] ROSE 2018. ROSE compiler infrastructure. (2018). Retrieved 14 Aug. 2018 from

http://rosecompiler.org/

[23] Paul Vincent Sabanal and Mark Vincent Yason. 2007. Reversing C++. In Proceed-
ings of Black Hat USA.

[24] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza

Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-Oriented Programming:

On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In

Proceedings of the IEEE Symposium on Security and Privacy.
[25] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You Ever

Wanted to KnowAbout Dynamic Taint Analysis and Forward Symbolic Execution

(but might have been afraid to ask). In Proceedings of the IEEE Symposium on
Security and Privacy.

[26] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and

Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass

Vulnerabilities in Binary Firmware. In Proceedings of the Network and Distributed
System Security Symposium.

[27] Igor Skochinsky. 2006. Reversing Microsoft Visual C++ Part 2: Classes, Methods

and RTTI. (2006). Retrieved 14 Aug. 2018 from http://www.openrce.org/articles/

full_view/23

[28] Venkatesh Srinivasan and Thomas Reps. 2014. Recovery of Class Hierarchies and

Composition Relationships fromMachine Code. In Proceedings of the International
Conference on Compiler Construction.

[29] Terrance Swift and David S. Warren. 2012. XSB: Extending Prolog with Tabled

Logic Programming. Theory and Practice of Logic Programming 12, 1-2 (2012).

[30] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen,

Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano

Giuffrida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the

Binary Level. In Proceedings of the IEEE Symposium on Security and Privacy.
[31] Minghua Wang, Heng Yin, Abhishek Vasisht Bhaskar, Purui Su, and Dengguo

Feng. 2015. Binary Code Continent: Finer-grained Control Flow Integrity for

Stripped Binaries. In Proceedings of the Annual Computer Security Applications
Conference.

[32] Wikiversity. 2017. Visual C++ name mangling. (2017). Retrieved 14 Aug. 2018

from https://en.wikiversity.org/wiki/Visual_C%2B%2B_name_mangling

[33] Kyungjin Yoo and Rajeev Barua. 2014. Recovery of Object Oriented Features

from C++ Binaries. In Proceedings of the IEEE Asia-Pacific Software Engineering
Conference.

[34] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song.

2015. VTint: Protecting Virtual Function Tables’ Integrity.. In Proceedings of the
Network and Distributed System Security Symposium.

[35] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In

Proceedings of the USENIX Security Symposium.

ACKNOWLEDGMENTS
Copyright 2018 ACM. All Rights Reserved. This material is based

upon work funded and supported by the Department of Defense

under Contract No. FA8702-15-D-0002 with Carnegie Mellon Uni-

versity for the operation of the Software Engineering Institute, a

federally funded research and development center.

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

DM18-0949

http://www.boost.org
http://www.boost.org
http://www.openrce.org/articles/files/jangrayhood.pdf
https://www.hex-rays.com/products/ida/
https://itanium-cxx-abi.github.io/cxx-abi/
https://github.com/Microsoft/microsoft-pdb
https://docs.microsoft.com/en-us/cpp/build/reference/gl-whole-program-optimization
https://docs.microsoft.com/en-us/cpp/build/reference/gl-whole-program-optimization
https://github.com/cmu-sei/pharos/tree/master/share/prolog/oorules
https://github.com/cmu-sei/pharos
https://github.com/cmu-sei/pharos
http://rosecompiler.org/
http://www.openrce.org/articles/full_view/23
http://www.openrce.org/articles/full_view/23
https://en.wikiversity.org/wiki/Visual_C%2B%2B_name_mangling

	Abstract
	1 Introduction
	2 Background
	2.1 Virtual Functions
	2.2 Class Relationships
	2.3 Method Implementation and thiscall
	2.4 Runtime Type Identification

	3 Design
	3.1 Design Goals and Motivations
	3.2 Design Overview

	4 Reasoning System
	4.1 Symbolic Analysis
	4.2 Initial Facts
	4.3 Entity Facts
	4.4 Reasoning Rules
	4.5 Hypothetical Reasoning Rules
	4.6 Consistency Checking Rules

	5 Implementation
	6 Evaluation
	6.1 Program Corpus
	6.2 Ground Truth
	6.3 Edit Distance as a Class Membership Metric
	6.4 Class Membership Results
	6.5 Method Properties
	6.6 Performance

	7 Discussion and Limitations
	7.1 Optimizations
	7.2 Other platforms
	7.3 External classes

	8 Related Work
	8.1 Recovery of C++ Abstractions
	8.2 Security Protections for C++ Binaries
	8.3 Detection of C++ Vulnerabilities

	9 Conclusions
	References
	Acknowledgments

